|
--- |
|
language: |
|
- fr |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- chat |
|
- llama |
|
- llama3 |
|
- finetune |
|
- french |
|
- legal |
|
- loi |
|
library_name: transformers |
|
inference: false |
|
model_creator: MaziyarPanahi |
|
quantized_by: MaziyarPanahi |
|
base_model: meta-llama/Llama-3.2-3B |
|
model_name: calme-3.3-llamaloi-3b |
|
datasets: |
|
- MaziyarPanahi/calme-legalkit-v0.2 |
|
license: llama3.2 |
|
--- |
|
|
|
<img src="./calme_3.png" alt="Calme-3 Models" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
|
|
# MaziyarPanahi/calme-3.3-llamaloi-3b |
|
|
|
This model is an advanced iteration of the powerful `meta-llama/Llama-3.2-3B`, specifically fine-tuned to enhance its capabilities in French Legal domain. |
|
|
|
|
|
# ⚡ Quantized GGUF |
|
|
|
All GGUF models are available here: [MaziyarPanahi/calme-3.3-llamaloi-3b-GGUF](https://huggingface.co/MaziyarPanahi/calme-3.3-llamaloi-3b-GGUF) |
|
|
|
|
|
# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
Leaderboard 2 coming soon! |
|
|
|
|
|
# Prompt Template |
|
|
|
This model uses `ChatML` prompt template: |
|
|
|
``` |
|
<|im_start|>system |
|
{System} |
|
<|im_end|> |
|
<|im_start|>user |
|
{User} |
|
<|im_end|> |
|
<|im_start|>assistant |
|
{Assistant} |
|
```` |
|
|
|
# How to use |
|
|
|
|
|
```python |
|
|
|
# Use a pipeline as a high-level helper |
|
|
|
from transformers import pipeline |
|
|
|
messages = [ |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-3.3-llamaloi-3b") |
|
pipe(messages) |
|
|
|
|
|
# Load model directly |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-3.3-llamaloi-3b") |
|
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-3.3-llamaloi-3b") |
|
``` |
|
|
|
|
|
|
|
# Ethical Considerations |
|
|
|
As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments. |