|
--- |
|
base_model: "meta-llama/Meta-Llama-3-8B-Instruct" |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
- facebook |
|
- meta |
|
- pytorch |
|
- llama |
|
- llama-3 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
license: other |
|
license_name: llama3 |
|
license_link: LICENSE |
|
inference: false |
|
model_creator: MaziyarPanahi |
|
model_name: Llama-3-13B-Instruct-v0.1 |
|
quantized_by: MaziyarPanahi |
|
--- |
|
|
|
<img src="./llama-3-merges.webp" alt="Goku 8x22B v0.1 Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
|
|
# Llama-3-13B-Instruct-v0.1 |
|
|
|
This model is a self-merge of `meta-llama/Meta-Llama-3-8B-Instruct` model. |
|
|
|
# How to use |
|
|
|
You can use this model by using `MaziyarPanahi/Llama-3-13B-Instruct-v0.1` as the model name in Hugging Face's |
|
transformers library. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from transformers import pipeline |
|
import torch |
|
|
|
model_id = "MaziyarPanahi/Llama-3-13B-Instruct-v0.1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
# attn_implementation="flash_attention_2" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True |
|
) |
|
|
|
streamer = TextStreamer(tokenizer) |
|
|
|
pipeline = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
streamer=streamer |
|
) |
|
|
|
# Then you can use the pipeline to generate text. |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
outputs = pipeline( |
|
prompt, |
|
max_new_tokens=256, |
|
eos_token_id=terminators, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.95, |
|
) |
|
print(outputs[0]["generated_text"][len(prompt):]) |
|
``` |
|
|
|
## Prompt template |
|
|
|
```text |
|
<|begin_of_text|><|start_header_id|>system<|end_header_id|> |
|
|
|
You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|> |
|
|
|
what's 25-4*2+3<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
|
|
|
To evaluate this expression, we need to follow the order of operations (PEMDAS): |
|
|
|
1. First, multiply 4 and 2: 4*2 = 8 |
|
2. Then, subtract 8 from 25: 25 - 8 = 17 |
|
3. Finally, add 3: 17 + 3 = 20 |
|
|
|
So, 25-4*2+3 = 20!<|eot_id|> |
|
To evaluate this expression, we need to follow the order of operations (PEMDAS): |
|
|
|
1. First, multiply 4 and 2: 4*2 = 8 |
|
2. Then, subtract 8 from 25: 25 - 8 = 17 |
|
3. Finally, add 3: 17 + 3 = 20 |
|
|
|
So, 25-4*2+3 = 20! |
|
``` |