File size: 33,065 Bytes
8e7dd6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
import copy
import json
import os
import shutil
import subprocess
import sys
import traceback
from collections.abc import Callable
from pathlib import Path
from modules.dataLoader.BaseDataLoader import BaseDataLoader
from modules.model.BaseModel import BaseModel
from modules.modelLoader.BaseModelLoader import BaseModelLoader
from modules.modelSampler.BaseModelSampler import BaseModelSampler
from modules.modelSaver.BaseModelSaver import BaseModelSaver
from modules.modelSetup.BaseModelSetup import BaseModelSetup
from modules.trainer.BaseTrainer import BaseTrainer
from modules.util import create, path_util
from modules.util.callbacks.TrainCallbacks import TrainCallbacks
from modules.util.commands.TrainCommands import TrainCommands
from modules.util.config.SampleConfig import SampleConfig
from modules.util.config.TrainConfig import TrainConfig
from modules.util.dtype_util import create_grad_scaler, enable_grad_scaling
from modules.util.enum.ImageFormat import ImageFormat
from modules.util.enum.ModelFormat import ModelFormat
from modules.util.enum.TimeUnit import TimeUnit
from modules.util.enum.TrainingMethod import TrainingMethod
from modules.util.memory_util import TorchMemoryRecorder
from modules.util.time_util import get_string_timestamp
from modules.util.torch_util import torch_gc
from modules.util.TrainProgress import TrainProgress
import torch
from torch import Tensor, nn
from torch.nn import Parameter
from torch.utils.hooks import RemovableHandle
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms.functional import pil_to_tensor
from PIL.Image import Image
from tqdm import tqdm
class GenericTrainer(BaseTrainer):
model_loader: BaseModelLoader
model_setup: BaseModelSetup
data_loader: BaseDataLoader
model_saver: BaseModelSaver
model_sampler: BaseModelSampler
model: BaseModel
validation_data_loader: BaseDataLoader
previous_sample_time: float
sample_queue: list[Callable]
parameters: list[Parameter]
tensorboard_subprocess: subprocess.Popen
tensorboard: SummaryWriter
grad_hook_handles: list[RemovableHandle]
def __init__(self, config: TrainConfig, callbacks: TrainCallbacks, commands: TrainCommands):
super().__init__(config, callbacks, commands)
tensorboard_log_dir = os.path.join(config.workspace_dir, "tensorboard")
os.makedirs(Path(tensorboard_log_dir).absolute(), exist_ok=True)
self.tensorboard = SummaryWriter(os.path.join(tensorboard_log_dir, get_string_timestamp()))
if config.tensorboard:
tensorboard_executable = os.path.join(os.path.dirname(sys.executable), "tensorboard")
tensorboard_args = [
tensorboard_executable,
"--logdir",
tensorboard_log_dir,
"--port",
"6006",
"--samples_per_plugin=images=100,scalars=10000",
]
if self.config.tensorboard_expose:
tensorboard_args.append("--bind_all")
self.tensorboard_subprocess = subprocess.Popen(tensorboard_args)
self.one_step_trained = False
self.grad_hook_handles = []
def start(self):
if self.config.clear_cache_before_training and self.config.latent_caching:
self.__clear_cache()
if self.config.train_dtype.enable_tf():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
self.model_loader = self.create_model_loader()
self.model_setup = self.create_model_setup()
self.callbacks.on_update_status("loading the model")
model_names = self.config.model_names()
if self.config.continue_last_backup:
self.callbacks.on_update_status("searching for previous backups")
last_backup_path = self.config.get_last_backup_path()
if last_backup_path:
if self.config.training_method == TrainingMethod.LORA:
model_names.lora = last_backup_path
elif self.config.training_method == TrainingMethod.EMBEDDING:
model_names.embedding.model_name = last_backup_path
else: # fine-tunes
model_names.base_model = last_backup_path
print(f"Continuing training from backup '{last_backup_path}'...")
else:
print("No backup found, continuing without backup...")
self.callbacks.on_update_status("loading the model")
self.model = self.model_loader.load(
model_type=self.config.model_type,
model_names=model_names,
weight_dtypes=self.config.weight_dtypes(),
)
self.model.train_config = self.config
self.callbacks.on_update_status("running model setup")
self.model_setup.setup_train_device(self.model, self.config)
self.model_setup.setup_model(self.model, self.config)
self.model.to(self.temp_device)
self.model.eval()
torch_gc()
self.callbacks.on_update_status("creating the data loader/caching")
self.data_loader = self.create_data_loader(
self.model, self.model.train_progress
)
self.model_saver = self.create_model_saver()
self.model_sampler = self.create_model_sampler(self.model)
self.previous_sample_time = -1
self.sample_queue = []
self.parameters = self.model.parameters.parameters()
if self.config.validation:
self.validation_data_loader = self.create_data_loader(
self.model, self.model.train_progress, is_validation=True
)
def __clear_cache(self):
print(
f'Clearing cache directory {self.config.cache_dir}! '
f'You can disable this if you want to continue using the same cache.'
)
if os.path.isdir(self.config.cache_dir):
for filename in os.listdir(self.config.cache_dir):
path = os.path.join(self.config.cache_dir, filename)
if os.path.isdir(path) and (filename.startswith('epoch-') or filename in ['image', 'text']):
shutil.rmtree(path)
def __prune_backups(self, backups_to_keep: int):
backup_dirpath = os.path.join(self.config.workspace_dir, "backup")
if os.path.exists(backup_dirpath):
backup_directories = sorted(
[dirpath for dirpath in os.listdir(backup_dirpath) if
os.path.isdir(os.path.join(backup_dirpath, dirpath))],
reverse=True,
)
for dirpath in backup_directories[backups_to_keep:]:
dirpath = os.path.join(backup_dirpath, dirpath)
try:
shutil.rmtree(dirpath)
except Exception:
print(f"Could not delete old rolling backup {dirpath}")
return
def __enqueue_sample_during_training(self, fun: Callable):
self.sample_queue.append(fun)
def __execute_sample_during_training(self):
for fun in self.sample_queue:
fun()
self.sample_queue = []
def __sample_loop(
self,
train_progress: TrainProgress,
train_device: torch.device,
sample_config_list: list[SampleConfig],
folder_postfix: str = "",
image_format: ImageFormat = ImageFormat.JPG,
is_custom_sample: bool = False,
):
for i, sample_config in enumerate(sample_config_list):
if sample_config.enabled:
try:
safe_prompt = path_util.safe_filename(sample_config.prompt)
if is_custom_sample:
sample_dir = os.path.join(
self.config.workspace_dir,
"samples",
"custom",
)
else:
sample_dir = os.path.join(
self.config.workspace_dir,
"samples",
f"{str(i)} - {safe_prompt}{folder_postfix}",
)
sample_path = os.path.join(
sample_dir,
f"{get_string_timestamp()}-training-sample-{train_progress.filename_string()}{image_format.extension()}"
)
def on_sample_default(image: Image):
if self.config.samples_to_tensorboard:
self.tensorboard.add_image(
f"sample{str(i)} - {safe_prompt}", pil_to_tensor(image), # noqa: B023
train_progress.global_step
)
self.callbacks.on_sample_default(image)
def on_sample_custom(image: Image):
self.callbacks.on_sample_custom(image)
on_sample = on_sample_custom if is_custom_sample else on_sample_default
on_update_progress = self.callbacks.on_update_sample_custom_progress if is_custom_sample else self.callbacks.on_update_sample_default_progress
self.model.to(self.temp_device)
self.model.eval()
sample_config = copy.copy(sample_config)
sample_config.from_train_config(self.config)
self.model_sampler.sample(
sample_config=sample_config,
destination=sample_path,
image_format=self.config.sample_image_format,
on_sample=on_sample,
on_update_progress=on_update_progress,
)
except Exception:
traceback.print_exc()
print("Error during sampling, proceeding without sampling")
torch_gc()
def __sample_during_training(
self,
train_progress: TrainProgress,
train_device: torch.device,
sample_params_list: list[SampleConfig] = None,
):
# Special case for schedule-free optimizers.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.eval()
torch_gc()
self.callbacks.on_update_status("sampling")
is_custom_sample = False
if not sample_params_list:
if self.config.samples is not None:
sample_params_list = self.config.samples
else:
with open(self.config.sample_definition_file_name, 'r') as f:
samples = json.load(f)
for i in range(len(samples)):
samples[i] = SampleConfig.default_values().from_dict(samples[i])
sample_params_list = samples
else:
is_custom_sample = True
if self.model.ema:
self.model.ema.copy_ema_to(self.parameters, store_temp=True)
self.__sample_loop(
train_progress=train_progress,
train_device=train_device,
sample_config_list=sample_params_list,
image_format=self.config.sample_image_format,
is_custom_sample=is_custom_sample,
)
if self.model.ema:
self.model.ema.copy_temp_to(self.parameters)
# ema-less sampling, if an ema model exists
if self.model.ema and not is_custom_sample and self.config.non_ema_sampling:
self.__sample_loop(
train_progress=train_progress,
train_device=train_device,
sample_config_list=sample_params_list,
image_format=self.config.sample_image_format,
folder_postfix=" - no-ema",
)
self.model_setup.setup_train_device(self.model, self.config)
# Special case for schedule-free optimizers.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.train()
torch_gc()
def __validate(self, train_progress):
if self.__needs_validate(train_progress):
self.validation_data_loader.get_data_set().start_next_epoch()
current_epoch_length_validation = self.validation_data_loader.get_data_set().approximate_length()
if current_epoch_length_validation == 0:
return
torch_gc()
step_tqdm_validation = tqdm(
self.validation_data_loader.get_data_loader(),
desc="validation_step",
total=current_epoch_length_validation)
accumulated_loss_per_concept = {}
concept_counts = {}
mapping_seed_to_label = {}
mapping_label_to_seed = {}
for validation_batch in step_tqdm_validation:
if self.__needs_gc(train_progress):
torch_gc()
with torch.no_grad():
model_output_data = self.model_setup.predict(
self.model, validation_batch, self.config, train_progress)
loss_validation = self.model_setup.calculate_loss(
self.model, validation_batch, model_output_data, self.config)
# since validation batch size = 1
concept_name = validation_batch["concept_name"][0]
concept_path = validation_batch["concept_path"][0]
concept_seed = validation_batch["concept_seed"].item()
loss = loss_validation.item()
label = concept_name if concept_name else os.path.basename(concept_path)
# check and fix collision to display both graphs in tensorboard
if label in mapping_label_to_seed and mapping_label_to_seed[label] != concept_seed:
suffix = 1
new_label = f"{label}({suffix})"
while new_label in mapping_label_to_seed and mapping_label_to_seed[new_label] != concept_seed:
suffix += 1
new_label = f"{label}({suffix})"
label = new_label
if concept_seed not in mapping_seed_to_label:
mapping_seed_to_label[concept_seed] = label
mapping_label_to_seed[label] = concept_seed
accumulated_loss_per_concept[concept_seed] = accumulated_loss_per_concept.get(concept_seed, 0) + loss
concept_counts[concept_seed] = concept_counts.get(concept_seed, 0) + 1
for concept_seed, total_loss in accumulated_loss_per_concept.items():
average_loss = total_loss / concept_counts[concept_seed]
self.tensorboard.add_scalar(f"loss/validation_step/{mapping_seed_to_label[concept_seed]}",
average_loss,
train_progress.global_step)
if len(concept_counts) > 1:
total_loss = sum(accumulated_loss_per_concept[key] for key in concept_counts)
total_count = sum(concept_counts[key] for key in concept_counts)
total_average_loss = total_loss / total_count
self.tensorboard.add_scalar("loss/validation_step/total_average",
total_average_loss,
train_progress.global_step)
def __save_backup_config(self, backup_path):
config_path = os.path.join(backup_path, "onetrainer_config")
args_path = path_util.canonical_join(config_path, "args.json")
concepts_path = path_util.canonical_join(config_path, "concepts.json")
samples_path = path_util.canonical_join(config_path, "samples.json")
os.makedirs(Path(config_path).absolute(), exist_ok=True)
with open(args_path, "w") as f:
json.dump(self.config.to_dict(), f, indent=4)
if os.path.isfile(self.config.concept_file_name):
shutil.copy2(self.config.concept_file_name, concepts_path)
if os.path.isfile(self.config.sample_definition_file_name):
shutil.copy2(self.config.sample_definition_file_name, samples_path)
def backup(self, train_progress: TrainProgress):
torch_gc()
self.callbacks.on_update_status("creating backup")
backup_name = f"{get_string_timestamp()}-backup-{train_progress.filename_string()}"
backup_path = os.path.join(self.config.workspace_dir, "backup", backup_name)
# Special case for schedule-free optimizers.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.eval()
try:
print("Creating Backup " + backup_path)
self.model_saver.save(
self.model,
self.config.model_type,
ModelFormat.INTERNAL,
backup_path,
None,
)
self.__save_backup_config(backup_path)
except Exception:
traceback.print_exc()
print("Could not save backup. Check your disk space!")
try:
if os.path.isdir(backup_path):
shutil.rmtree(backup_path)
except Exception:
traceback.print_exc()
print("Could not delete partial backup")
finally:
if self.config.rolling_backup:
self.__prune_backups(self.config.rolling_backup_count)
self.model_setup.setup_train_device(self.model, self.config)
# Special case for schedule-free optimizers.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.train()
torch_gc()
def save(self, train_progress: TrainProgress):
torch_gc()
self.callbacks.on_update_status("saving")
save_path = os.path.join(
self.config.workspace_dir,
"save",
f"{self.config.save_filename_prefix}{get_string_timestamp()}-save-{train_progress.filename_string()}{self.config.output_model_format.file_extension()}"
)
print("Saving " + save_path)
try:
if self.model.ema:
self.model.ema.copy_ema_to(self.parameters, store_temp=True)
# Special case for schedule-free optimizers.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.eval()
self.model_saver.save(
model=self.model,
model_type=self.config.model_type,
output_model_format=self.config.output_model_format,
output_model_destination=save_path,
dtype=self.config.output_dtype.torch_dtype()
)
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.train()
except Exception:
traceback.print_exc()
print("Could not save model. Check your disk space!")
try:
if os.path.isfile(save_path):
shutil.rmtree(save_path)
except Exception:
traceback.print_exc()
print("Could not delete partial save")
finally:
if self.model.ema:
self.model.ema.copy_temp_to(self.parameters)
torch_gc()
def __needs_sample(self, train_progress: TrainProgress):
return self.repeating_action_needed(
"sample", self.config.sample_after, self.config.sample_after_unit, train_progress
)
def __needs_backup(self, train_progress: TrainProgress):
return self.repeating_action_needed(
"backup", self.config.backup_after, self.config.backup_after_unit, train_progress, start_at_zero=False
)
def __needs_save(self, train_progress: TrainProgress):
return self.repeating_action_needed(
"save", self.config.save_after, self.config.save_after_unit, train_progress, start_at_zero=False
)
def __needs_gc(self, train_progress: TrainProgress):
return self.repeating_action_needed("gc", 5, TimeUnit.MINUTE, train_progress, start_at_zero=False)
def __needs_validate(self, train_progress: TrainProgress):
return self.repeating_action_needed(
"validate", self.config.validate_after, self.config.validate_after_unit, train_progress
)
def __is_update_step(self, train_progress: TrainProgress) -> bool:
return self.repeating_action_needed(
"update_step", self.config.gradient_accumulation_steps, TimeUnit.STEP, train_progress, start_at_zero=False
)
def __apply_fused_back_pass(self, scaler):
if self.config.optimizer.optimizer.supports_fused_back_pass() and self.config.optimizer.fused_back_pass:
if self.config.gradient_accumulation_steps > 1:
raise RuntimeError("fused_back_step can not be used if gradient_accumulation_steps > 1")
for param_group in self.model.optimizer.param_groups:
for i, parameter in enumerate(param_group["params"]):
# TODO: Find a better check instead of "parameter.requires_grad".
# This will break if the some parameters don't require grad during the first training step.
if parameter.requires_grad:
if scaler:
def __grad_hook(tensor: Tensor, param_group=param_group, i=i):
scaler.unscale_parameter_(tensor, self.model.optimizer)
nn.utils.clip_grad_norm_(tensor, 1)
scaler.maybe_opt_step_parameter(tensor, param_group, i, self.model.optimizer)
tensor.grad = None
else:
def __grad_hook(tensor: Tensor, param_group=param_group, i=i):
nn.utils.clip_grad_norm_(tensor, 1)
self.model.optimizer.step_parameter(tensor, param_group, i)
tensor.grad = None
handle = parameter.register_post_accumulate_grad_hook(__grad_hook)
self.grad_hook_handles.append(handle)
def __before_eval(self):
# Special case for schedule-free optimizers, which need eval()
# called before evaluation. Can and should move this to a callback
# during a refactoring.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.eval()
def train(self):
train_device = torch.device(self.config.train_device)
train_progress = self.model.train_progress
if self.config.only_cache:
self.callbacks.on_update_status("caching")
for _epoch in tqdm(range(train_progress.epoch, self.config.epochs, 1), desc="epoch"):
self.data_loader.get_data_set().start_next_epoch()
return
scaler = create_grad_scaler() if enable_grad_scaling(self.config.train_dtype, self.parameters) else None
self.__apply_fused_back_pass(scaler)
# False if the model gradients are all None, True otherwise
# This is used to schedule sampling only when the gradients don't take up any space
has_gradient = False
lr_scheduler = None
accumulated_loss = 0.0
ema_loss = None
for _epoch in tqdm(range(train_progress.epoch, self.config.epochs, 1), desc="epoch"):
self.callbacks.on_update_status("starting epoch/caching")
if self.config.latent_caching:
self.data_loader.get_data_set().start_next_epoch()
self.model_setup.setup_train_device(self.model, self.config)
else:
self.model_setup.setup_train_device(self.model, self.config)
self.data_loader.get_data_set().start_next_epoch()
# Special case for schedule-free optimizers, which need train()
# called before training. Can and should move this to a callback
# during a refactoring.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.train()
torch_gc()
if lr_scheduler is None:
lr_scheduler = create.create_lr_scheduler(
config=self.config,
optimizer=self.model.optimizer,
learning_rate_scheduler=self.config.learning_rate_scheduler,
warmup_steps=self.config.learning_rate_warmup_steps,
num_cycles=self.config.learning_rate_cycles,
num_epochs=self.config.epochs,
approximate_epoch_length=self.data_loader.get_data_set().approximate_length(),
batch_size=self.config.batch_size,
gradient_accumulation_steps=self.config.gradient_accumulation_steps,
global_step=train_progress.global_step
)
current_epoch_length = self.data_loader.get_data_set().approximate_length()
step_tqdm = tqdm(self.data_loader.get_data_loader(), desc="step", total=current_epoch_length,
initial=train_progress.epoch_step)
for batch in step_tqdm:
if self.__needs_sample(train_progress) or self.commands.get_and_reset_sample_default_command():
self.__enqueue_sample_during_training(
lambda: self.__sample_during_training(train_progress, train_device)
)
sample_commands = self.commands.get_and_reset_sample_custom_commands()
if sample_commands:
def create_sample_commands_fun(sample_commands):
def sample_commands_fun():
self.__sample_during_training(train_progress, train_device, sample_commands)
return sample_commands_fun
self.__enqueue_sample_during_training(create_sample_commands_fun(sample_commands))
if self.__needs_gc(train_progress):
torch_gc()
if not has_gradient:
self.__execute_sample_during_training()
if self.__needs_backup(train_progress) or self.commands.get_and_reset_backup_command():
self.backup(train_progress)
if self.__needs_save(train_progress) or self.commands.get_and_reset_save_command():
self.save(train_progress)
self.callbacks.on_update_status("training")
with TorchMemoryRecorder(enabled=False):
for i in range(len(batch['prompt'])):
if batch['prompt'][i] == "woman":
with torch.no_grad():
self.model.transformer_lora.remove_hook_from_module()
regmodel_output_data = self.model_setup.predict(self.model, {k: v[i:i+1] for k, v in batch.items()}, self.config, train_progress)
self.model.transformer_lora.hook_to_module()
model_output_data = self.model_setup.predict(self.model, {k: v[i:i+1] for k, v in batch.items()}, self.config, train_progress)
model_output_data['target'] = regmodel_output_data['predicted']
loss = self.model_setup.calculate_loss(self.model, {k: v[i:i+1] for k, v in batch.items()}, model_output_data, self.config)
loss *= 1.0
print("\nregmodel loss:", loss)
else:
model_output_data = self.model_setup.predict(self.model, {k: v[i:i+1] for k, v in batch.items()}, self.config, train_progress)
loss = self.model_setup.calculate_loss(self.model, {k: v[i:i+1] for k, v in batch.items()}, model_output_data, self.config)
loss = self.model_setup.calculate_loss(self.model, batch, model_output_data, self.config)
loss = loss / self.config.gradient_accumulation_steps
if scaler:
scaler.scale(loss).backward()
else:
loss.backward()
has_gradient = True
accumulated_loss += loss.item()
if self.__is_update_step(train_progress):
if scaler and self.config.optimizer.optimizer.supports_fused_back_pass() and self.config.optimizer.fused_back_pass:
scaler.step_after_unscale_parameter_(self.model.optimizer)
scaler.update()
elif scaler:
scaler.unscale_(self.model.optimizer)
nn.utils.clip_grad_norm_(self.parameters, 1)
scaler.step(self.model.optimizer)
scaler.update()
else:
nn.utils.clip_grad_norm_(self.parameters, 1)
self.model.optimizer.step()
lr_scheduler.step() # done before zero_grad, because some lr schedulers need gradients
self.model.optimizer.zero_grad(set_to_none=True)
has_gradient = False
self.model_setup.report_to_tensorboard(
self.model, self.config, lr_scheduler, self.tensorboard
)
self.tensorboard.add_scalar("loss/train_step", accumulated_loss, train_progress.global_step)
ema_loss = ema_loss or accumulated_loss
ema_loss = (ema_loss * 0.99) + (accumulated_loss * 0.01)
step_tqdm.set_postfix({
'loss': accumulated_loss,
'smooth loss': ema_loss,
})
self.tensorboard.add_scalar("smooth_loss/train_step", ema_loss, train_progress.global_step)
accumulated_loss = 0.0
self.model_setup.after_optimizer_step(self.model, self.config, train_progress)
if self.model.ema:
update_step = train_progress.global_step // self.config.gradient_accumulation_steps
self.tensorboard.add_scalar(
"ema_decay",
self.model.ema.get_current_decay(update_step),
train_progress.global_step
)
self.model.ema.step(
self.parameters,
update_step
)
self.one_step_trained = True
if self.config.validation:
self.__validate(train_progress)
train_progress.next_step(self.config.batch_size)
self.callbacks.on_update_train_progress(train_progress, current_epoch_length, self.config.epochs)
if self.commands.get_stop_command():
return
train_progress.next_epoch()
self.callbacks.on_update_train_progress(train_progress, current_epoch_length, self.config.epochs)
if self.commands.get_stop_command():
return
def end(self):
if self.one_step_trained:
if self.config.backup_before_save:
self.backup(self.model.train_progress)
# Special case for schedule-free optimizers.
if self.config.optimizer.optimizer.is_schedule_free:
torch.clear_autocast_cache()
self.model.optimizer.eval()
self.callbacks.on_update_status("saving the final model")
if self.model.ema:
self.model.ema.copy_ema_to(self.parameters, store_temp=False)
print("Saving " + self.config.output_model_destination)
self.model_saver.save(
model=self.model,
model_type=self.config.model_type,
output_model_format=self.config.output_model_format,
output_model_destination=self.config.output_model_destination,
dtype=self.config.output_dtype.torch_dtype()
)
self.tensorboard.close()
if self.config.tensorboard:
self.tensorboard_subprocess.kill()
for handle in self.grad_hook_handles:
handle.remove()
|