File size: 33,065 Bytes
8e7dd6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import copy
import json
import os
import shutil
import subprocess
import sys
import traceback
from collections.abc import Callable
from pathlib import Path

from modules.dataLoader.BaseDataLoader import BaseDataLoader
from modules.model.BaseModel import BaseModel
from modules.modelLoader.BaseModelLoader import BaseModelLoader
from modules.modelSampler.BaseModelSampler import BaseModelSampler
from modules.modelSaver.BaseModelSaver import BaseModelSaver
from modules.modelSetup.BaseModelSetup import BaseModelSetup
from modules.trainer.BaseTrainer import BaseTrainer
from modules.util import create, path_util
from modules.util.callbacks.TrainCallbacks import TrainCallbacks
from modules.util.commands.TrainCommands import TrainCommands
from modules.util.config.SampleConfig import SampleConfig
from modules.util.config.TrainConfig import TrainConfig
from modules.util.dtype_util import create_grad_scaler, enable_grad_scaling
from modules.util.enum.ImageFormat import ImageFormat
from modules.util.enum.ModelFormat import ModelFormat
from modules.util.enum.TimeUnit import TimeUnit
from modules.util.enum.TrainingMethod import TrainingMethod
from modules.util.memory_util import TorchMemoryRecorder
from modules.util.time_util import get_string_timestamp
from modules.util.torch_util import torch_gc
from modules.util.TrainProgress import TrainProgress

import torch
from torch import Tensor, nn
from torch.nn import Parameter
from torch.utils.hooks import RemovableHandle
from torch.utils.tensorboard import SummaryWriter
from torchvision.transforms.functional import pil_to_tensor

from PIL.Image import Image
from tqdm import tqdm


class GenericTrainer(BaseTrainer):
    model_loader: BaseModelLoader
    model_setup: BaseModelSetup
    data_loader: BaseDataLoader
    model_saver: BaseModelSaver
    model_sampler: BaseModelSampler
    model: BaseModel
    validation_data_loader: BaseDataLoader

    previous_sample_time: float
    sample_queue: list[Callable]

    parameters: list[Parameter]

    tensorboard_subprocess: subprocess.Popen
    tensorboard: SummaryWriter

    grad_hook_handles: list[RemovableHandle]

    def __init__(self, config: TrainConfig, callbacks: TrainCallbacks, commands: TrainCommands):
        super().__init__(config, callbacks, commands)

        tensorboard_log_dir = os.path.join(config.workspace_dir, "tensorboard")
        os.makedirs(Path(tensorboard_log_dir).absolute(), exist_ok=True)
        self.tensorboard = SummaryWriter(os.path.join(tensorboard_log_dir, get_string_timestamp()))
        if config.tensorboard:
            tensorboard_executable = os.path.join(os.path.dirname(sys.executable), "tensorboard")

            tensorboard_args = [
                tensorboard_executable,
                "--logdir",
                tensorboard_log_dir,
                "--port",
                "6006",
                "--samples_per_plugin=images=100,scalars=10000",
            ]

            if self.config.tensorboard_expose:
                tensorboard_args.append("--bind_all")

            self.tensorboard_subprocess = subprocess.Popen(tensorboard_args)

        self.one_step_trained = False

        self.grad_hook_handles = []

    def start(self):
        if self.config.clear_cache_before_training and self.config.latent_caching:
            self.__clear_cache()

        if self.config.train_dtype.enable_tf():
            torch.backends.cuda.matmul.allow_tf32 = True
            torch.backends.cudnn.allow_tf32 = True

        self.model_loader = self.create_model_loader()
        self.model_setup = self.create_model_setup()

        self.callbacks.on_update_status("loading the model")

        model_names = self.config.model_names()

        if self.config.continue_last_backup:
            self.callbacks.on_update_status("searching for previous backups")
            last_backup_path = self.config.get_last_backup_path()

            if last_backup_path:
                if self.config.training_method == TrainingMethod.LORA:
                    model_names.lora = last_backup_path
                elif self.config.training_method == TrainingMethod.EMBEDDING:
                    model_names.embedding.model_name = last_backup_path
                else:  # fine-tunes
                    model_names.base_model = last_backup_path

                print(f"Continuing training from backup '{last_backup_path}'...")
            else:
                print("No backup found, continuing without backup...")

        self.callbacks.on_update_status("loading the model")
        self.model = self.model_loader.load(
            model_type=self.config.model_type,
            model_names=model_names,
            weight_dtypes=self.config.weight_dtypes(),
        )
        self.model.train_config = self.config

        self.callbacks.on_update_status("running model setup")

        self.model_setup.setup_train_device(self.model, self.config)
        self.model_setup.setup_model(self.model, self.config)
        self.model.to(self.temp_device)
        self.model.eval()
        torch_gc()

        self.callbacks.on_update_status("creating the data loader/caching")

        self.data_loader = self.create_data_loader(
            self.model, self.model.train_progress
        )
        self.model_saver = self.create_model_saver()

        self.model_sampler = self.create_model_sampler(self.model)
        self.previous_sample_time = -1
        self.sample_queue = []

        self.parameters = self.model.parameters.parameters()
        if self.config.validation:
            self.validation_data_loader = self.create_data_loader(
                self.model, self.model.train_progress, is_validation=True
            )

    def __clear_cache(self):
        print(
            f'Clearing cache directory {self.config.cache_dir}! '
            f'You can disable this if you want to continue using the same cache.'
        )
        if os.path.isdir(self.config.cache_dir):
            for filename in os.listdir(self.config.cache_dir):
                path = os.path.join(self.config.cache_dir, filename)
                if os.path.isdir(path) and (filename.startswith('epoch-') or filename in ['image', 'text']):
                    shutil.rmtree(path)

    def __prune_backups(self, backups_to_keep: int):
        backup_dirpath = os.path.join(self.config.workspace_dir, "backup")
        if os.path.exists(backup_dirpath):
            backup_directories = sorted(
                [dirpath for dirpath in os.listdir(backup_dirpath) if
                 os.path.isdir(os.path.join(backup_dirpath, dirpath))],
                reverse=True,
            )

            for dirpath in backup_directories[backups_to_keep:]:
                dirpath = os.path.join(backup_dirpath, dirpath)
                try:
                    shutil.rmtree(dirpath)
                except Exception:
                    print(f"Could not delete old rolling backup {dirpath}")

        return

    def __enqueue_sample_during_training(self, fun: Callable):
        self.sample_queue.append(fun)

    def __execute_sample_during_training(self):
        for fun in self.sample_queue:
            fun()
        self.sample_queue = []

    def __sample_loop(
            self,
            train_progress: TrainProgress,
            train_device: torch.device,
            sample_config_list: list[SampleConfig],
            folder_postfix: str = "",
            image_format: ImageFormat = ImageFormat.JPG,
            is_custom_sample: bool = False,
    ):
        for i, sample_config in enumerate(sample_config_list):
            if sample_config.enabled:
                try:
                    safe_prompt = path_util.safe_filename(sample_config.prompt)

                    if is_custom_sample:
                        sample_dir = os.path.join(
                            self.config.workspace_dir,
                            "samples",
                            "custom",
                        )
                    else:
                        sample_dir = os.path.join(
                            self.config.workspace_dir,
                            "samples",
                            f"{str(i)} - {safe_prompt}{folder_postfix}",
                        )

                    sample_path = os.path.join(
                        sample_dir,
                        f"{get_string_timestamp()}-training-sample-{train_progress.filename_string()}{image_format.extension()}"
                    )

                    def on_sample_default(image: Image):
                        if self.config.samples_to_tensorboard:
                            self.tensorboard.add_image(
                                f"sample{str(i)} - {safe_prompt}", pil_to_tensor(image),  # noqa: B023
                                train_progress.global_step
                            )
                        self.callbacks.on_sample_default(image)

                    def on_sample_custom(image: Image):
                        self.callbacks.on_sample_custom(image)

                    on_sample = on_sample_custom if is_custom_sample else on_sample_default
                    on_update_progress = self.callbacks.on_update_sample_custom_progress if is_custom_sample else self.callbacks.on_update_sample_default_progress

                    self.model.to(self.temp_device)
                    self.model.eval()

                    sample_config = copy.copy(sample_config)
                    sample_config.from_train_config(self.config)

                    self.model_sampler.sample(
                        sample_config=sample_config,
                        destination=sample_path,
                        image_format=self.config.sample_image_format,
                        on_sample=on_sample,
                        on_update_progress=on_update_progress,
                    )
                except Exception:
                    traceback.print_exc()
                    print("Error during sampling, proceeding without sampling")

                torch_gc()

    def __sample_during_training(
            self,
            train_progress: TrainProgress,
            train_device: torch.device,
            sample_params_list: list[SampleConfig] = None,
    ):
        # Special case for schedule-free optimizers.
        if self.config.optimizer.optimizer.is_schedule_free:
            torch.clear_autocast_cache()
            self.model.optimizer.eval()
        torch_gc()

        self.callbacks.on_update_status("sampling")

        is_custom_sample = False
        if not sample_params_list:
            if self.config.samples is not None:
                sample_params_list = self.config.samples
            else:
                with open(self.config.sample_definition_file_name, 'r') as f:
                    samples = json.load(f)
                    for i in range(len(samples)):
                        samples[i] = SampleConfig.default_values().from_dict(samples[i])
                    sample_params_list = samples
        else:
            is_custom_sample = True

        if self.model.ema:
            self.model.ema.copy_ema_to(self.parameters, store_temp=True)

        self.__sample_loop(
            train_progress=train_progress,
            train_device=train_device,
            sample_config_list=sample_params_list,
            image_format=self.config.sample_image_format,
            is_custom_sample=is_custom_sample,
        )

        if self.model.ema:
            self.model.ema.copy_temp_to(self.parameters)

        # ema-less sampling, if an ema model exists
        if self.model.ema and not is_custom_sample and self.config.non_ema_sampling:
            self.__sample_loop(
                train_progress=train_progress,
                train_device=train_device,
                sample_config_list=sample_params_list,
                image_format=self.config.sample_image_format,
                folder_postfix=" - no-ema",
            )

        self.model_setup.setup_train_device(self.model, self.config)
        # Special case for schedule-free optimizers.
        if self.config.optimizer.optimizer.is_schedule_free:
            torch.clear_autocast_cache()
            self.model.optimizer.train()

        torch_gc()

    def __validate(self, train_progress):
        if self.__needs_validate(train_progress):
            self.validation_data_loader.get_data_set().start_next_epoch()
            current_epoch_length_validation = self.validation_data_loader.get_data_set().approximate_length()

            if current_epoch_length_validation == 0:
                return

            torch_gc()

            step_tqdm_validation = tqdm(
                self.validation_data_loader.get_data_loader(),
                desc="validation_step",
                total=current_epoch_length_validation)

            accumulated_loss_per_concept = {}
            concept_counts = {}
            mapping_seed_to_label = {}
            mapping_label_to_seed = {}

            for validation_batch in step_tqdm_validation:
                if self.__needs_gc(train_progress):
                    torch_gc()

                with torch.no_grad():
                    model_output_data = self.model_setup.predict(
                        self.model, validation_batch, self.config, train_progress)
                    loss_validation = self.model_setup.calculate_loss(
                        self.model, validation_batch, model_output_data, self.config)

                # since validation batch size = 1
                concept_name = validation_batch["concept_name"][0]
                concept_path = validation_batch["concept_path"][0]
                concept_seed = validation_batch["concept_seed"].item()
                loss = loss_validation.item()

                label = concept_name if concept_name else os.path.basename(concept_path)
                # check and fix collision to display both graphs in tensorboard
                if label in mapping_label_to_seed and mapping_label_to_seed[label] != concept_seed:
                    suffix = 1
                    new_label = f"{label}({suffix})"
                    while new_label in mapping_label_to_seed and mapping_label_to_seed[new_label] != concept_seed:
                        suffix += 1
                        new_label = f"{label}({suffix})"
                    label = new_label

                if concept_seed not in mapping_seed_to_label:
                    mapping_seed_to_label[concept_seed] = label
                    mapping_label_to_seed[label] = concept_seed

                accumulated_loss_per_concept[concept_seed] = accumulated_loss_per_concept.get(concept_seed, 0) + loss
                concept_counts[concept_seed] = concept_counts.get(concept_seed, 0) + 1

            for concept_seed, total_loss in accumulated_loss_per_concept.items():
                average_loss = total_loss / concept_counts[concept_seed]

                self.tensorboard.add_scalar(f"loss/validation_step/{mapping_seed_to_label[concept_seed]}",
                                            average_loss,
                                            train_progress.global_step)

            if len(concept_counts) > 1:
                total_loss = sum(accumulated_loss_per_concept[key] for key in concept_counts)
                total_count = sum(concept_counts[key] for key in concept_counts)
                total_average_loss = total_loss / total_count

                self.tensorboard.add_scalar("loss/validation_step/total_average",
                                            total_average_loss,
                                            train_progress.global_step)

    def __save_backup_config(self, backup_path):
        config_path = os.path.join(backup_path, "onetrainer_config")
        args_path = path_util.canonical_join(config_path, "args.json")
        concepts_path = path_util.canonical_join(config_path, "concepts.json")
        samples_path = path_util.canonical_join(config_path, "samples.json")

        os.makedirs(Path(config_path).absolute(), exist_ok=True)

        with open(args_path, "w") as f:
            json.dump(self.config.to_dict(), f, indent=4)
        if os.path.isfile(self.config.concept_file_name):
            shutil.copy2(self.config.concept_file_name, concepts_path)
        if os.path.isfile(self.config.sample_definition_file_name):
            shutil.copy2(self.config.sample_definition_file_name, samples_path)

    def backup(self, train_progress: TrainProgress):
        torch_gc()

        self.callbacks.on_update_status("creating backup")

        backup_name = f"{get_string_timestamp()}-backup-{train_progress.filename_string()}"
        backup_path = os.path.join(self.config.workspace_dir, "backup", backup_name)

        # Special case for schedule-free optimizers.
        if self.config.optimizer.optimizer.is_schedule_free:
            torch.clear_autocast_cache()
            self.model.optimizer.eval()

        try:
            print("Creating Backup " + backup_path)

            self.model_saver.save(
                self.model,
                self.config.model_type,
                ModelFormat.INTERNAL,
                backup_path,
                None,
            )

            self.__save_backup_config(backup_path)
        except Exception:
            traceback.print_exc()
            print("Could not save backup. Check your disk space!")
            try:
                if os.path.isdir(backup_path):
                    shutil.rmtree(backup_path)
            except Exception:
                traceback.print_exc()
                print("Could not delete partial backup")
        finally:
            if self.config.rolling_backup:
                self.__prune_backups(self.config.rolling_backup_count)

        self.model_setup.setup_train_device(self.model, self.config)
        # Special case for schedule-free optimizers.
        if self.config.optimizer.optimizer.is_schedule_free:
            torch.clear_autocast_cache()
            self.model.optimizer.train()

        torch_gc()

    def save(self, train_progress: TrainProgress):
        torch_gc()

        self.callbacks.on_update_status("saving")

        save_path = os.path.join(
            self.config.workspace_dir,
            "save",
            f"{self.config.save_filename_prefix}{get_string_timestamp()}-save-{train_progress.filename_string()}{self.config.output_model_format.file_extension()}"
        )
        print("Saving " + save_path)

        try:
            if self.model.ema:
                self.model.ema.copy_ema_to(self.parameters, store_temp=True)

            # Special case for schedule-free optimizers.
            if self.config.optimizer.optimizer.is_schedule_free:
                torch.clear_autocast_cache()
                self.model.optimizer.eval()
            self.model_saver.save(
                model=self.model,
                model_type=self.config.model_type,
                output_model_format=self.config.output_model_format,
                output_model_destination=save_path,
                dtype=self.config.output_dtype.torch_dtype()
            )
            if self.config.optimizer.optimizer.is_schedule_free:
                torch.clear_autocast_cache()
                self.model.optimizer.train()
        except Exception:
            traceback.print_exc()
            print("Could not save model. Check your disk space!")
            try:
                if os.path.isfile(save_path):
                    shutil.rmtree(save_path)
            except Exception:
                traceback.print_exc()
                print("Could not delete partial save")
        finally:
            if self.model.ema:
                self.model.ema.copy_temp_to(self.parameters)

        torch_gc()

    def __needs_sample(self, train_progress: TrainProgress):
        return self.repeating_action_needed(
            "sample", self.config.sample_after, self.config.sample_after_unit, train_progress
        )

    def __needs_backup(self, train_progress: TrainProgress):
        return self.repeating_action_needed(
            "backup", self.config.backup_after, self.config.backup_after_unit, train_progress, start_at_zero=False
        )

    def __needs_save(self, train_progress: TrainProgress):
        return self.repeating_action_needed(
            "save", self.config.save_after, self.config.save_after_unit, train_progress, start_at_zero=False
        )

    def __needs_gc(self, train_progress: TrainProgress):
        return self.repeating_action_needed("gc", 5, TimeUnit.MINUTE, train_progress, start_at_zero=False)

    def __needs_validate(self, train_progress: TrainProgress):
        return self.repeating_action_needed(
            "validate", self.config.validate_after, self.config.validate_after_unit, train_progress
        )

    def __is_update_step(self, train_progress: TrainProgress) -> bool:
        return self.repeating_action_needed(
            "update_step", self.config.gradient_accumulation_steps, TimeUnit.STEP, train_progress, start_at_zero=False
        )

    def __apply_fused_back_pass(self, scaler):
        if self.config.optimizer.optimizer.supports_fused_back_pass() and self.config.optimizer.fused_back_pass:
            if self.config.gradient_accumulation_steps > 1:
                raise RuntimeError("fused_back_step can not be used if gradient_accumulation_steps > 1")

            for param_group in self.model.optimizer.param_groups:
                for i, parameter in enumerate(param_group["params"]):
                    # TODO: Find a better check instead of "parameter.requires_grad".
                    #       This will break if the some parameters don't require grad during the first training step.
                    if parameter.requires_grad:
                        if scaler:
                            def __grad_hook(tensor: Tensor, param_group=param_group, i=i):
                                scaler.unscale_parameter_(tensor, self.model.optimizer)
                                nn.utils.clip_grad_norm_(tensor, 1)
                                scaler.maybe_opt_step_parameter(tensor, param_group, i, self.model.optimizer)
                                tensor.grad = None
                        else:
                            def __grad_hook(tensor: Tensor, param_group=param_group, i=i):
                                nn.utils.clip_grad_norm_(tensor, 1)
                                self.model.optimizer.step_parameter(tensor, param_group, i)
                                tensor.grad = None

                        handle = parameter.register_post_accumulate_grad_hook(__grad_hook)
                        self.grad_hook_handles.append(handle)

    def __before_eval(self):
        # Special case for schedule-free optimizers, which need eval()
        # called before evaluation. Can and should move this to a callback
        # during a refactoring.
        if self.config.optimizer.optimizer.is_schedule_free:
            torch.clear_autocast_cache()
            self.model.optimizer.eval()

    def train(self):
        train_device = torch.device(self.config.train_device)

        train_progress = self.model.train_progress

        if self.config.only_cache:
            self.callbacks.on_update_status("caching")
            for _epoch in tqdm(range(train_progress.epoch, self.config.epochs, 1), desc="epoch"):
                self.data_loader.get_data_set().start_next_epoch()
            return

        scaler = create_grad_scaler() if enable_grad_scaling(self.config.train_dtype, self.parameters) else None

        self.__apply_fused_back_pass(scaler)

        # False if the model gradients are all None, True otherwise
        # This is used to schedule sampling only when the gradients don't take up any space
        has_gradient = False

        lr_scheduler = None
        accumulated_loss = 0.0
        ema_loss = None
        for _epoch in tqdm(range(train_progress.epoch, self.config.epochs, 1), desc="epoch"):
            self.callbacks.on_update_status("starting epoch/caching")

            if self.config.latent_caching:
                self.data_loader.get_data_set().start_next_epoch()
                self.model_setup.setup_train_device(self.model, self.config)
            else:
                self.model_setup.setup_train_device(self.model, self.config)
                self.data_loader.get_data_set().start_next_epoch()

            # Special case for schedule-free optimizers, which need train()
            # called before training. Can and should move this to a callback
            # during a refactoring.
            if self.config.optimizer.optimizer.is_schedule_free:
                torch.clear_autocast_cache()
                self.model.optimizer.train()

            torch_gc()

            if lr_scheduler is None:
                lr_scheduler = create.create_lr_scheduler(
                    config=self.config,
                    optimizer=self.model.optimizer,
                    learning_rate_scheduler=self.config.learning_rate_scheduler,
                    warmup_steps=self.config.learning_rate_warmup_steps,
                    num_cycles=self.config.learning_rate_cycles,
                    num_epochs=self.config.epochs,
                    approximate_epoch_length=self.data_loader.get_data_set().approximate_length(),
                    batch_size=self.config.batch_size,
                    gradient_accumulation_steps=self.config.gradient_accumulation_steps,
                    global_step=train_progress.global_step
                )

            current_epoch_length = self.data_loader.get_data_set().approximate_length()
            step_tqdm = tqdm(self.data_loader.get_data_loader(), desc="step", total=current_epoch_length,
                             initial=train_progress.epoch_step)
            for batch in step_tqdm:
                if self.__needs_sample(train_progress) or self.commands.get_and_reset_sample_default_command():
                    self.__enqueue_sample_during_training(
                        lambda: self.__sample_during_training(train_progress, train_device)
                    )

                sample_commands = self.commands.get_and_reset_sample_custom_commands()
                if sample_commands:
                    def create_sample_commands_fun(sample_commands):
                        def sample_commands_fun():
                            self.__sample_during_training(train_progress, train_device, sample_commands)

                        return sample_commands_fun

                    self.__enqueue_sample_during_training(create_sample_commands_fun(sample_commands))

                if self.__needs_gc(train_progress):
                    torch_gc()

                if not has_gradient:
                    self.__execute_sample_during_training()

                if self.__needs_backup(train_progress) or self.commands.get_and_reset_backup_command():
                    self.backup(train_progress)

                if self.__needs_save(train_progress) or self.commands.get_and_reset_save_command():
                    self.save(train_progress)

                self.callbacks.on_update_status("training")

                
with TorchMemoryRecorder(enabled=False):
    for i in range(len(batch['prompt'])):
        if batch['prompt'][i] == "woman":
            with torch.no_grad():
                self.model.transformer_lora.remove_hook_from_module()
                regmodel_output_data = self.model_setup.predict(self.model, {k: v[i:i+1] for k, v in batch.items()}, self.config, train_progress)
                self.model.transformer_lora.hook_to_module()
            
            model_output_data = self.model_setup.predict(self.model, {k: v[i:i+1] for k, v in batch.items()}, self.config, train_progress)
            model_output_data['target'] = regmodel_output_data['predicted']
            loss = self.model_setup.calculate_loss(self.model, {k: v[i:i+1] for k, v in batch.items()}, model_output_data, self.config)
            loss *= 1.0
            print("\nregmodel loss:", loss)
        else:
            model_output_data = self.model_setup.predict(self.model, {k: v[i:i+1] for k, v in batch.items()}, self.config, train_progress)
            loss = self.model_setup.calculate_loss(self.model, {k: v[i:i+1] for k, v in batch.items()}, model_output_data, self.config)
                      loss = self.model_setup.calculate_loss(self.model, batch, model_output_data, self.config)

                    loss = loss / self.config.gradient_accumulation_steps
                    if scaler:
                        scaler.scale(loss).backward()
                    else:
                        loss.backward()

                    has_gradient = True
                    accumulated_loss += loss.item()

                    if self.__is_update_step(train_progress):
                        if scaler and self.config.optimizer.optimizer.supports_fused_back_pass() and self.config.optimizer.fused_back_pass:
                            scaler.step_after_unscale_parameter_(self.model.optimizer)
                            scaler.update()
                        elif scaler:
                            scaler.unscale_(self.model.optimizer)
                            nn.utils.clip_grad_norm_(self.parameters, 1)
                            scaler.step(self.model.optimizer)
                            scaler.update()
                        else:
                            nn.utils.clip_grad_norm_(self.parameters, 1)
                            self.model.optimizer.step()

                        lr_scheduler.step()  # done before zero_grad, because some lr schedulers need gradients
                        self.model.optimizer.zero_grad(set_to_none=True)
                        has_gradient = False

                        self.model_setup.report_to_tensorboard(
                            self.model, self.config, lr_scheduler, self.tensorboard
                        )

                        self.tensorboard.add_scalar("loss/train_step", accumulated_loss, train_progress.global_step)
                        ema_loss = ema_loss or accumulated_loss
                        ema_loss = (ema_loss * 0.99) + (accumulated_loss * 0.01)
                        step_tqdm.set_postfix({
                            'loss': accumulated_loss,
                            'smooth loss': ema_loss,
                        })
                        self.tensorboard.add_scalar("smooth_loss/train_step", ema_loss, train_progress.global_step)
                        accumulated_loss = 0.0

                        self.model_setup.after_optimizer_step(self.model, self.config, train_progress)
                        if self.model.ema:
                            update_step = train_progress.global_step // self.config.gradient_accumulation_steps
                            self.tensorboard.add_scalar(
                                "ema_decay",
                                self.model.ema.get_current_decay(update_step),
                                train_progress.global_step
                            )
                            self.model.ema.step(
                                self.parameters,
                                update_step
                            )

                        self.one_step_trained = True

                if self.config.validation:
                    self.__validate(train_progress)

                train_progress.next_step(self.config.batch_size)
                self.callbacks.on_update_train_progress(train_progress, current_epoch_length, self.config.epochs)

                if self.commands.get_stop_command():
                    return

            train_progress.next_epoch()
            self.callbacks.on_update_train_progress(train_progress, current_epoch_length, self.config.epochs)

            if self.commands.get_stop_command():
                return

    def end(self):
        if self.one_step_trained:
            if self.config.backup_before_save:
                self.backup(self.model.train_progress)
            # Special case for schedule-free optimizers.
            if self.config.optimizer.optimizer.is_schedule_free:
                torch.clear_autocast_cache()
                self.model.optimizer.eval()

            self.callbacks.on_update_status("saving the final model")

            if self.model.ema:
                self.model.ema.copy_ema_to(self.parameters, store_temp=False)

            print("Saving " + self.config.output_model_destination)

            self.model_saver.save(
                model=self.model,
                model_type=self.config.model_type,
                output_model_format=self.config.output_model_format,
                output_model_destination=self.config.output_model_destination,
                dtype=self.config.output_dtype.torch_dtype()
            )

        self.tensorboard.close()

        if self.config.tensorboard:
            self.tensorboard_subprocess.kill()

        for handle in self.grad_hook_handles:
            handle.remove()