metadata
{}
Small dummy LLama2-type Model useable for Unit/Integration tests. Suitable for CPU only machines, see H2O LLM Studio for an example integration test.
Model was created as follows:
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
repo_name = "MaxJeblick/llama2-0b-unit-test"
model_name = "h2oai/h2ogpt-4096-llama2-7b-chat"
config = AutoConfig.from_pretrained(model_name)
config.hidden_size = 12
config.max_position_embeddings = 1024
config.intermediate_size = 24
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.num_key_value_heads = 2
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_config(config)
print(model.num_parameters()) # 770_940
model.push_to_hub(repo_name, private=False)
tokenizer.push_to_hub(repo_name, private=False)
config.push_to_hub(repo_name, private=False)
Below is a small example that will run in ~ 1 second.
import torch
from transformers import AutoModelForCausalLM
def test_manual_greedy_generate():
max_new_tokens = 10
# note this is on CPU!
model = AutoModelForCausalLM.from_pretrained("MaxJeblick/llama2-0b-unit-test").eval()
input_ids = model.dummy_inputs["input_ids"]
y = model.generate(input_ids, max_new_tokens=max_new_tokens)
assert y.shape == (3, input_ids.shape[1] + max_new_tokens)
for _ in range(max_new_tokens):
with torch.no_grad():
outputs = model(input_ids)
next_token_logits = outputs.logits[:, -1, :]
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
input_ids = torch.cat([input_ids, next_token_id], dim=-1)
assert torch.allclose(y, input_ids)
Tipp:
Use fixtures with session scope to load the model only once. This will decrease test runtime further.
import pytest
from transformers import AutoModelForCausalLM
@pytest.fixture(scope="session")
def model():
return AutoModelForCausalLM.from_pretrained("MaxJeblick/llama2-0b-unit-test").eval()