|
Small dummy LLama2-type Model useable for Unit/Integration tests. |
|
|
|
|
|
```python |
|
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM |
|
|
|
repo_name = "MaxJeblick/llama2-0b-unit-test" |
|
model_name = "h2oai/h2ogpt-4096-llama2-7b-chat" |
|
config = AutoConfig.from_pretrained(model_name) |
|
config.hidden_size = 12 |
|
config.max_position_embeddings = 32 |
|
config.intermediate_size = 24 |
|
config.num_attention_heads = 2 |
|
config.num_hidden_layers = 2 |
|
config.num_key_value_heads = 2 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
model = AutoModelForCausalLM.from_config(config) |
|
print(model.num_parameters()) # 770_940 |
|
|
|
model.push_to_hub(repo_name, private=False) |
|
tokenizer.push_to_hub(repo_name, private=False) |
|
config.push_to_hub(repo_name, private=False) |
|
``` |
|
|
|
|
|
Use the following configuration in [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to run a complete experiment in **5 seconds** using the default dataset and default settings otherwise: |
|
|
|
```yaml |
|
Validation Size: 0.1 |
|
Data Sample: 0.1 |
|
Max Length Prompt: 32 |
|
Max Length Answer: 32 |
|
Max Length: 64 |
|
Backbone Dtype: float16 |
|
Gradient Checkpointing: False |
|
Batch Size: 8 |
|
Max Length Inference: 16 |
|
``` |
|
|
|
|