metadata
base_model: MathGenie/Mistral-7B-Ours-SFT
tags:
- math
model-index:
- name: Mistral-7B-Ours-SFT-SCDPO
results: []
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
Mistral-7B-Ours-SFT-SCDPO
This model is a fine-tuned version of MathGenie/Mistral-7B-Ours-SFT. It achieves the following results on the evaluation set:
- Loss: 0.1793
- Rewards/chosen: 0.2587
- Rewards/rejected: -7.0301
- Rewards/accuracies: 0.8947
- Rewards/margins: 7.2889
- Logps/rejected: -253.7773
- Logps/chosen: -80.3105
- Logits/rejected: -2.3417
- Logits/chosen: -2.3846
Model description
This is a model fine-tuned for mathematical problem-solving.
Intended uses & limitations
The model is intended for solving math problems.
Training and evaluation data
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3963 | 0.21 | 100 | 0.3636 | 1.8634 | -0.1518 | 0.8816 | 2.0152 | -184.9944 | -64.2644 | -2.7112 | -2.7505 |
0.2849 | 0.43 | 200 | 0.2598 | 0.7706 | -3.7221 | 0.8816 | 4.4927 | -220.6974 | -75.1921 | -2.5067 | -2.5475 |
0.2496 | 0.64 | 300 | 0.2295 | 0.9323 | -4.2717 | 0.8684 | 5.2040 | -226.1934 | -73.5753 | -2.5080 | -2.5494 |
0.2331 | 0.86 | 400 | 0.2089 | 0.7871 | -4.8912 | 0.8684 | 5.6783 | -232.3884 | -75.0269 | -2.4967 | -2.5382 |
0.0874 | 1.07 | 500 | 0.1872 | 0.6345 | -5.7444 | 0.8816 | 6.3789 | -240.9202 | -76.5527 | -2.4323 | -2.4761 |
0.1217 | 1.28 | 600 | 0.1832 | 0.2282 | -6.6907 | 0.8684 | 6.9188 | -250.3827 | -80.6161 | -2.3741 | -2.4172 |
0.0966 | 1.5 | 700 | 0.1807 | 0.1849 | -7.0125 | 0.8816 | 7.1975 | -253.6012 | -81.0485 | -2.3503 | -2.3940 |
0.0755 | 1.71 | 800 | 0.1802 | 0.3224 | -6.9539 | 0.8947 | 7.2763 | -253.0150 | -79.6739 | -2.3437 | -2.3867 |
0.1177 | 1.93 | 900 | 0.1793 | 0.2587 | -7.0301 | 0.8947 | 7.2889 | -253.7773 | -80.3105 | -2.3417 | -2.3846 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2