MateiCv's picture
End of training
4e2df83
metadata
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: spa-eng-pos-tagging-v3
    results: []

spa-eng-pos-tagging-v3

This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3384
  • Accuracy: 0.9036
  • Precision: 0.8993
  • Recall: 0.8285
  • F1: 0.8324
  • Hamming Loss: 0.0964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming Loss
0.7752 1.0 1744 0.7222 0.7342 0.7317 0.6509 0.6524 0.2658
0.6276 2.0 3488 0.5259 0.8059 0.8008 0.7205 0.7264 0.1941
0.4813 3.0 5232 0.4473 0.8353 0.8281 0.7604 0.7616 0.1647
0.4063 4.0 6976 0.4453 0.8393 0.8353 0.7616 0.7662 0.1607
0.3361 5.0 8720 0.3882 0.8658 0.8661 0.7894 0.7959 0.1342
0.2883 6.0 10464 0.3773 0.8747 0.8693 0.8022 0.8043 0.1253
0.2409 7.0 12208 0.3681 0.8803 0.8753 0.8056 0.8081 0.1197
0.2168 8.0 13952 0.3470 0.8899 0.8836 0.8161 0.8181 0.1101
0.1816 9.0 15696 0.3750 0.8838 0.8832 0.8071 0.8133 0.1162
0.1696 10.0 17440 0.3609 0.8914 0.8871 0.8161 0.8200 0.1086
0.1572 11.0 19184 0.3470 0.8977 0.8924 0.8228 0.8261 0.1023
0.1385 12.0 20928 0.3384 0.9036 0.8993 0.8285 0.8324 0.0964

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3