File size: 1,771 Bytes
af2e1cc
 
 
 
 
ed9c1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af2e1cc
 
 
 
 
 
 
ed9c1f2
af2e1cc
 
ed9c1f2
 
 
 
 
af2e1cc
 
 
 
ed9c1f2
 
 
af2e1cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
tags:
- generated_from_trainer
model-index:
- name: prosody_gttbsc_distilbert-uncased-pitch
  results: 
    - task:
        type: dialogue act classification
      dataset:
        name: asapp/slue-phase-2
        type: hvb
      metrics:
        - name: F1 macro E2E
          type: F1 macro
          value: 65.33
        - name: F1 macro GT
          type: F1 macro
          value: 71.78
datasets:
- asapp/slue-phase-2
language:
- en
metrics:
- f1-macro
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# prosody_gttbsc_distilbert-uncased-pitch

Ground truth text with prosody encoding residual cross attention multi-label DAC

## Model description
 
Prosody encoder: 2 layer transformer encoder with initial dense projection  
Backbone: [DistilBert uncased](https://huggingface.co/distilbert/distilbert-base-uncased)  
Pooling: Self attention  
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween  


## Training and evaluation data

Trained on ground truth.  
Evaluated on ground truth (GT) and normalized [Whisper small](https://huggingface.co/openai/whisper-small) transcripts (E2E).  



### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP



### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1