File size: 4,460 Bytes
4b10b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f650755
4b10b36
146af34
4b10b36
 
c03697f
 
 
 
559f91c
c03697f
 
 
a8a76ab
 
c03697f
 
 
0df6f44
559f91c
c03697f
559f91c
c03697f
 
 
559f91c
 
 
 
c03697f
 
559f91c
c03697f
559f91c
 
c03697f
 
 
 
 
 
 
559f91c
4b10b36
c03697f
f650755
 
4b10b36
 
 
f650755
4b10b36
 
 
 
 
559f91c
 
4b10b36
 
a8a76ab
 
4b10b36
 
0df6f44
4b10b36
 
 
 
 
 
 
559f91c
 
 
 
4b10b36
 
 
 
 
 
 
 
 
559f91c
4b10b36
 
 
 
 
 
 
 
 
 
 
 
27f961c
f650755
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
language: br
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Breton by Marxav
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice br
      type: common_voice
      args: br
    metrics:
       - name: Test WER
         type: wer
         value: 43.43
---
# wav2vec2-large-xlsr-53-breton
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

lang = "br"
test_dataset = load_dataset("common_voice", lang, split="test[:2%]") 

processor = Wav2Vec2Processor.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton") 
model = Wav2Vec2ForCTC.from_pretrained("Marxav/wav2vec2-large-xlsr-53-breton")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
   speech_array, sampling_rate = torchaudio.load(batch["path"])
   batch["speech"] = resampler(speech_array).squeeze().numpy()
   batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
   batch["sentence"] = re.sub("ʼ", "'", batch["sentence"])
   batch["sentence"] = re.sub("’", "'", batch["sentence"])
   batch["sentence"] = re.sub('‘', "'", batch["sentence"])
   return batch

nb_samples = 2
test_dataset = test_dataset.map(speech_file_to_array_fn)

inputs = processor(test_dataset["speech"][:nb_samples], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
   logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:nb_samples])
```
The above code leads to the following prediction for the first two samples:
* Prediction: ["neller ket dont a-benn eus netra la vez ser merc'hed evel sich", 'an eil hag egile']
* Reference: ["N'haller ket dont a-benn eus netra pa vezer nec'het evel-se.", 'An eil hag egile.']

The model can be evaluated as follows on the {language} test data of Common Voice.
```python
import re
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

lang = 'br'
test_dataset = load_dataset("common_voice", lang, split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton')
model = Wav2Vec2ForCTC.from_pretrained('Marxav/wav2vec2-large-xlsr-53-breton')
model.to("cuda")

chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
  batch["sentence"] = re.sub("ʼ", "'", batch["sentence"])
  batch["sentence"] = re.sub("’", "'", batch["sentence"])
  batch["sentence"] = re.sub('‘', "'", batch["sentence"])
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch

test_dataset = test_dataset.map(remove_special_characters)

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 43.43%
## Training
The Common Voice `train`, `validation` datasets were used for training.