File size: 8,759 Bytes
dad9379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a93c1
dad9379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
license: apache-2.0
base_model: ultralytics/yolov8m
tags:
- computer-vision
- object-detection
- yolov8
- logo-detection
- ultralytics
- roboflow
pipeline_tag: object-detection
library_name: ultralytics
datasets:
- roboflow
---

# Logo Detection Model - ComputerVisionF5

This model detects and localizes 6 specific logos in images: **F5**, **Factoria**, **FemCoders**, **Fundacion Orange**, **Microsoft**, and **SomosF5**. Built on YOLOv8m architecture for real-time object detection with high accuracy.

## Model Details

### Model Description

This is a fine-tuned YOLOv8m model specialized for logo detection and recognition. The model can identify and locate 6 different organizational logos within images, providing bounding boxes with confidence scores for each detection.

- **Developed by:** Mariden
- **Model type:** Object Detection (Logo Recognition)
- **License:** Apache-2.0  
- **Base model:** ultralytics/yolov8m
- **Dataset:** Custom dataset created with Roboflow
- **Classes:** 6 logo categories

### Model Sources

- **Repository:** https://huggingface.co/Mariden/ComputerVisionF5
- **Base Model:** https://github.com/ultralytics/ultralytics
- **Dataset Platform:** https://roboflow.com

## Uses

### Direct Use

The model is designed for:
- **Brand monitoring** and recognition systems
- **Content analysis** and automated tagging
- **Marketing analytics** and logo tracking
- **Educational projects** for computer vision

### Downstream Use

Can be integrated into:
- Brand monitoring and social media analysis tools
- Content management and digital asset systems  
- Marketing analytics dashboards
- Automated image classification pipelines
- Real-time logo detection applications

### Out-of-Scope Use

- General object detection (optimized specifically for these 6 logos)
- Real-time video processing without adequate hardware
- Detection of logos not present in the training dataset
- Commercial use without proper attribution

## How to Get Started with the Model

### Using Hugging Face Transformers (Recommended)

```python
from transformers import pipeline
from PIL import Image

# Load the detection pipeline
detector = pipeline("object-detection", model="Mariden/ComputerVisionF5")

# Load and process an image
image = Image.open("path/to/your/image.jpg")
results = detector(image)

# Display results
for result in results:
    print(f"Logo: {result['label']}")
    print(f"Confidence: {result['score']:.3f}")
    print(f"Bounding box: {result['box']}")
    print("---")
```

### Using Ultralytics YOLO

```python
from ultralytics import YOLO
from PIL import Image

# Load the model
model = YOLO('Mariden/ComputerVisionF5')

# Run inference
results = model("path/to/your/image.jpg")

# Display results
results[0].show()

# Get detailed predictions
for result in results:
    boxes = result.boxes
    for box in boxes:
        class_name = model.names[int(box.cls)]
        confidence = box.conf.item()
        print(f"Detected: {class_name} ({confidence:.3f})")
```

### Using Inference API

```python
import requests
from PIL import Image
import io

API_URL = "https://api-inference.huggingface.co/models/Mariden/ComputerVisionF5"
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}

def detect_logos(image_path):
    # Load and prepare image
    with open(image_path, "rb") as f:
        data = f.read()
    
    # Make API request
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

# Use the function
results = detect_logos("path/to/your/image.jpg")
print(results)
```

### Batch Processing

```python
from transformers import pipeline
import os

detector = pipeline("object-detection", model="Mariden/ComputerVisionF5")

def process_images_folder(folder_path):
    results = {}
    for filename in os.listdir(folder_path):
        if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
            image_path = os.path.join(folder_path, filename)
            detections = detector(image_path)
            results[filename] = detections
    return results

# Process all images in a folder
batch_results = process_images_folder("path/to/images/")
```

## Detected Logo Classes

| Class ID | Logo Name | Description |
|----------|-----------|-------------|
| 0 | **F5** | Technology and networking company |
| 1 | **Factoria** | Educational technology institution |  
| 2 | **FemCoders** | Women in tech coding bootcamp |
| 3 | **Fundacion Orange** | Digital inclusion foundation |
| 4 | **Microsoft** | Global technology corporation |
| 5 | **SomosF5** | Educational platform and community |

## Model Performance

### Key Features
- **Input Size:** 640x640 pixels (automatically resized)
- **Output:** Bounding boxes with confidence scores
- **Multi-detection:** Can detect multiple logos in single image
- **Real-time capable:** Optimized for fast inference
- **Format Support:** JPEG, PNG, WebP, and other common formats

### Usage Tips
1. **Image Quality:** Works best with clear, well-lit images
2. **Logo Size:** Optimal performance with logos >32x32 pixels
3. **Confidence Threshold:** Default 0.5, adjust based on use case
4. **Multiple Logos:** Efficiently handles multiple logo detections
5. **Aspect Ratios:** Automatically handles different image proportions

## Training Details

### Training Data
- **Source:** Custom dataset created using Roboflow platform
- **Annotation:** Manual bounding box annotation for all 6 logo classes
- **Augmentation:** Applied through Roboflow (rotation, scaling, brightness, etc.)
- **Quality Control:** Manually reviewed and validated annotations

### Training Process
- **Base Model:** YOLOv8m pretrained on COCO dataset  
- **Fine-tuning:** Transfer learning on custom logo dataset
- **Framework:** Ultralytics YOLOv8 training pipeline
- **Optimization:** Mixed precision training for efficiency

### Technical Specifications

#### Architecture
- **Model:** YOLOv8m (Medium variant)
- **Backbone:** CSPDarknet with PANet neck
- **Head:** YOLO detection head with anchor-free design
- **Parameters:** ~25M parameters
- **Input:** RGB images, 640x640 resolution
- **Output:** Bounding boxes, class probabilities, confidence scores

#### Performance Characteristics
- **Speed:** ~50-100 FPS on GPU (depending on hardware)
- **Memory:** ~4GB VRAM for inference
- **Formats:** PyTorch (.pt), ONNX (.onnx) available
- **Deployment:** CPU/GPU compatible

## Model Formats and Files

### Available Formats
- **PyTorch:** `pytorch_model.bin` - Main format for Hugging Face integration
- **ONNX:** `model.onnx` - Optimized for cross-platform deployment
- **Config:** `config.json` - Model configuration and class mappings
- **Preprocessor:** `preprocessor_config.json` - Image preprocessing parameters

### File Structure
```
Mariden/ComputerVisionF5/
β”œβ”€β”€ model.pt                   # Main PyTorch model
β”œβ”€β”€ model.onnx                 # ONNX optimized version  
β”œβ”€β”€ config.json                # Model configuration
β”œβ”€β”€ preprocessor_config.json   # Image preprocessing config
└── README.md                  # This documentation
```

## Limitations and Considerations

### Current Limitations
- **Scope:** Only detects the specific 6 trained logo classes
- **Variations:** Performance may vary with logo design changes
- **Size Constraints:** Very small logos (<32px) may not be detected reliably
- **Occlusion:** Partially hidden logos might be missed
- **Lighting:** Extreme lighting conditions may affect accuracy

### Best Practices
- Use high-resolution images when possible
- Ensure good lighting and contrast
- Avoid heavily compressed images
- Test confidence thresholds for your specific use case
- Consider image preprocessing for challenging conditions

## Ethical Considerations

This model is designed for educational and research purposes. When using for commercial applications:
- Ensure proper licensing and attribution
- Respect trademark and copyright policies
- Consider privacy implications when processing user-generated content
- Use responsibly for brand monitoring and analysis

## Citation and Attribution

If you use this model in your research or applications, please cite:

```bibtex
@model{mariden2024logodetection,
  title={Logo Detection Model - ComputerVisionF5},
  author={Mariden},
  year={2024},
  publisher={Hugging Face},
  journal={Hugging Face Model Hub},
  howpublished={\url{https://huggingface.co/Mariden/ComputerVisionF5}}
}
```

## Support and Contact

- **Issues:** Please report issues in the Hugging Face model repository
- **Questions:** Use the Community tab for questions and discussions
- **Updates:** Follow the repository for model updates and improvements

---

**License:** Apache-2.0 | **Framework:** Ultralytics YOLOv8 | **Platform:** Hugging Face πŸ€—