File size: 2,826 Bytes
474abf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: transformers
language:
- ar
license: mit
base_model: facebook/s2t-medium-mustc-multilingual-st
tags:
- generated_from_trainer
datasets:
- darija-c
metrics:
- bleu
model-index:
- name: Finetuned-facebook-s2t-for-darija-speech-translation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Finetuned-facebook-s2t-for-darija-speech-translation

This model is a fine-tuned version of [facebook/s2t-medium-mustc-multilingual-st](https://huggingface.co/facebook/s2t-medium-mustc-multilingual-st) on the Darija-C dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7855
- Bleu: 0.0032

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 9.1689        | 12.5  | 50   | 8.4431          | 0.0    |
| 7.9984        | 25.0  | 100  | 7.6555          | 0.0    |
| 7.4717        | 37.5  | 150  | 7.2774          | 0.0    |
| 7.2484        | 50.0  | 200  | 7.1061          | 0.0    |
| 7.0982        | 62.5  | 250  | 6.9703          | 0.0    |
| 6.9724        | 75.0  | 300  | 6.8526          | 0.0011 |
| 6.8564        | 87.5  | 350  | 6.7225          | 0.0034 |
| 6.7332        | 100.0 | 400  | 6.6144          | 0.0034 |
| 6.6511        | 112.5 | 450  | 6.5264          | 0.0034 |
| 6.5283        | 125.0 | 500  | 6.4174          | 0.0034 |
| 6.4477        | 137.5 | 550  | 6.3187          | 0.0034 |
| 6.3455        | 150.0 | 600  | 6.2208          | 0.0031 |
| 6.2683        | 162.5 | 650  | 6.0831          | 0.0034 |
| 6.1757        | 175.0 | 700  | 6.0449          | 0.0032 |
| 6.1017        | 187.5 | 750  | 5.9507          | 0.0034 |
| 6.0438        | 200.0 | 800  | 5.8899          | 0.0032 |
| 5.9752        | 212.5 | 850  | 5.8447          | 0.0034 |
| 5.9657        | 225.0 | 900  | 5.8105          | 0.0032 |
| 5.925         | 237.5 | 950  | 5.7858          | 0.0032 |
| 5.9142        | 250.0 | 1000 | 5.7855          | 0.0032 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 2.19.2
- Tokenizers 0.21.0