File size: 1,857 Bytes
b5e4115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fcff2b
 
 
 
 
 
b5e4115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fcff2b
 
 
 
b5e4115
 
 
 
 
 
4fcff2b
b5e4115
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_billsum_model

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7758
- Rouge1: 0.0847
- Rouge2: 0.026
- Rougel: 0.069
- Rougelsum: 0.0691
- Gen Len: 18.9356

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 7.0515        | 1.0   | 775  | 5.9513          | 0.0782 | 0.0229 | 0.0637 | 0.0637    | 18.964  |
| 6.0983        | 2.0   | 1550 | 5.8347          | 0.083  | 0.0254 | 0.0678 | 0.0679    | 18.9427 |
| 6.0491        | 3.0   | 2325 | 5.7848          | 0.0853 | 0.0262 | 0.0697 | 0.0697    | 18.9273 |
| 5.9983        | 4.0   | 3100 | 5.7758          | 0.0847 | 0.026  | 0.069  | 0.0691    | 18.9356 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.2.1
- Tokenizers 0.19.1