|
from fastapi import FastAPI, File, UploadFile, Form, WebSocket, WebSocketDisconnect |
|
from fastapi.responses import HTMLResponse |
|
import torch |
|
import os |
|
from ChatUniVi.constants import * |
|
from ChatUniVi.conversation import conv_templates, SeparatorStyle |
|
from ChatUniVi.model.builder import load_pretrained_model |
|
from ChatUniVi.utils import disable_torch_init |
|
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
from PIL import Image |
|
from decord import VideoReader, cpu |
|
import numpy as np |
|
import asyncio |
|
|
|
app = FastAPI() |
|
|
|
|
|
model = None |
|
tokenizer = None |
|
image_processor = None |
|
loading_progress = 0 |
|
|
|
def _get_rawvideo_dec(video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, video_framerate=1, s=None, e=None): |
|
if s is None: |
|
start_time, end_time = None, None |
|
else: |
|
start_time = int(s) |
|
end_time = int(e) |
|
start_time = start_time if start_time >= 0. else 0. |
|
end_time = end_time if end_time >= 0. else 0. |
|
if start_time > end_time: |
|
start_time, end_time = end_time, start_time |
|
elif start_time == end_time: |
|
end_time = start_time + 1 |
|
|
|
if os.path.exists(video_path): |
|
vreader = VideoReader(video_path, ctx=cpu(0)) |
|
else: |
|
print(video_path) |
|
raise FileNotFoundError |
|
|
|
fps = vreader.get_avg_fps() |
|
f_start = 0 if start_time is None else int(start_time * fps) |
|
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1)) |
|
num_frames = f_end - f_start + 1 |
|
if num_frames > 0: |
|
sample_fps = int(video_framerate) |
|
t_stride = int(round(float(fps) / sample_fps)) |
|
|
|
all_pos = list(range(f_start, f_end + 1, t_stride)) |
|
if len(all_pos) > max_frames: |
|
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)] |
|
else: |
|
sample_pos = all_pos |
|
|
|
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()] |
|
|
|
patch_images = torch.stack([image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] for img in patch_images]) |
|
slice_len = patch_images.shape[0] |
|
|
|
return patch_images, slice_len |
|
else: |
|
print("video path: {} error.") |
|
|
|
@app.on_event("startup") |
|
async def load_model(): |
|
global model, tokenizer, image_processor, loading_progress |
|
|
|
disable_torch_init() |
|
model_path = "/home/manish/Chat-UniVi/model/Chat-UniVi" |
|
model_name = "ChatUniVi" |
|
|
|
loading_progress = 10 |
|
await asyncio.sleep(1) |
|
|
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name) |
|
loading_progress = 50 |
|
await asyncio.sleep(1) |
|
|
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
loading_progress = 70 |
|
await asyncio.sleep(1) |
|
|
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model() |
|
image_processor = vision_tower.image_processor |
|
loading_progress = 100 |
|
|
|
@app.post("/process") |
|
async def process_video(question: str = Form(...), video: UploadFile = File(...)): |
|
try: |
|
video_path = f"temp_{video.filename}" |
|
with open(video_path, "wb") as f: |
|
f.write(video.file.read()) |
|
|
|
max_frames = 100 |
|
video_framerate = 1 |
|
|
|
video_frames, slice_len = _get_rawvideo_dec(video_path, image_processor, max_frames=max_frames, video_framerate=video_framerate) |
|
|
|
if model.config.mm_use_im_start_end: |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN * slice_len + DEFAULT_IM_END_TOKEN + '\n' + question |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN * slice_len + '\n' + question |
|
|
|
conv = conv_templates["simple"].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=video_frames.half().cuda(), |
|
do_sample=True, |
|
temperature=0.2, |
|
top_p=None, |
|
num_beams=1, |
|
output_scores=True, |
|
return_dict_in_generate=True, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
|
|
output_ids = output_ids.sequences |
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
|
|
return {"answer": outputs} |
|
|
|
except Exception as e: |
|
return {"error": str(e)} |
|
|
|
@app.websocket("/ws") |
|
async def websocket_endpoint(websocket: WebSocket): |
|
await websocket.accept() |
|
global loading_progress |
|
try: |
|
while loading_progress < 100: |
|
await websocket.send_json({"progress": loading_progress}) |
|
await asyncio.sleep(1) |
|
await websocket.send_json({"progress": loading_progress, "status": "Model Loaded"}) |
|
except WebSocketDisconnect: |
|
print("WebSocket disconnected") |
|
finally: |
|
await websocket.close() |
|
|
|
|
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def get(): |
|
return """ |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Video Question Answering</title> |
|
<style> |
|
body { |
|
font-family: Arial, sans-serif; |
|
margin: 40px; |
|
} |
|
.container { |
|
max-width: 600px; |
|
margin: 0 auto; |
|
} |
|
.form-group { |
|
margin-bottom: 20px; |
|
} |
|
.form-group label { |
|
display: block; |
|
margin-bottom: 5px; |
|
} |
|
.form-group input[type="text"] { |
|
width: 100%; |
|
padding: 8px; |
|
box-sizing: border-box; |
|
} |
|
.form-group input[type="file"] { |
|
width: 100%; |
|
padding: 8px; |
|
box-sizing: border-box; |
|
} |
|
.form-group button { |
|
padding: 10px 15px; |
|
background-color: #007bff; |
|
color: #fff; |
|
border: none; |
|
cursor: pointer; |
|
} |
|
.form-group button:hover { |
|
background-color: #0056b3; |
|
} |
|
.result { |
|
margin-top: 20px; |
|
padding: 10px; |
|
border: 1px solid #ddd; |
|
background-color: #f9f9f9; |
|
} |
|
.progress { |
|
margin-top: 20px; |
|
padding: 10px; |
|
border: 1px solid #ddd; |
|
background-color: #f9f9f9; |
|
} |
|
#progress-bar { |
|
width: 0; |
|
height: 20px; |
|
background-color: #4caf50; |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<div class="container"> |
|
<h1>Video Question Answering</h1> |
|
<div class="progress"> |
|
<div id="progress-bar"></div> |
|
</div> |
|
<div class="form-group"> |
|
<label for="question">Question:</label> |
|
<input type="text" id="question" name="question"> |
|
</div> |
|
<div class="form-group"> |
|
<label for="video">Upload Video:</label> |
|
<input type="file" id="video" name="video"> |
|
</div> |
|
<div class="form-group"> |
|
<button onclick="submitForm()">Submit</button> |
|
</div> |
|
<div class="result" id="result"></div> |
|
</div> |
|
<script> |
|
const progressBar = document.getElementById('progress-bar'); |
|
|
|
const ws = new WebSocket(`ws://${window.location.host}/ws`); |
|
ws.onmessage = function(event) { |
|
const data = JSON.parse(event.data); |
|
if (data.progress) { |
|
progressBar.style.width = data.progress + '%'; |
|
if (data.progress == 100) { |
|
ws.close(); |
|
} |
|
} |
|
if (data.status) { |
|
progressBar.innerText = data.status; |
|
} |
|
}; |
|
|
|
async function submitForm() { |
|
const question = document.getElementById('question').value; |
|
const video = document.getElementById('video').files[0]; |
|
|
|
const formData = new FormData(); |
|
formData.append('question', question); |
|
formData.append('video', video); |
|
|
|
const response = await fetch('/process', { |
|
method: 'POST', |
|
body: formData |
|
}); |
|
|
|
const result = await response.json(); |
|
document.getElementById('result').innerText = result.answer || result.error; |
|
} |
|
</script> |
|
</body> |
|
</html> |
|
""" |
|
|