structeval-lora / README.md
Mani124124's picture
Upload folder using huggingface_hub
c4d619e verified
metadata
base_model: unsloth/Qwen3-4B-Instruct-2507
datasets:
  - u-10bei/structured_data_with_cot_dataset_512_v5
language:
  - en
license: apache-2.0
library_name: peft
pipeline_tag: text-generation
tags:
  - qlora
  - lora
  - structured-output

unsloth/Qwen3-4B-Instruct-structeval-lora

This repository provides a LoRA adapter fine-tuned from unsloth/Qwen3-4B-Instruct-2507 using QLoRA (4-bit, Unsloth).

This repository contains LoRA adapter weights only. The base model must be loaded separately.

Training Objective

This adapter is trained to improve structured output accuracy (JSON / YAML / XML / TOML / CSV).

Loss is applied only to the final assistant output, while intermediate reasoning (Chain-of-Thought) is masked.

Training Configuration

  • Base model: unsloth/Qwen3-4B-Instruct-2507
  • Method: QLoRA (4-bit)
  • Max sequence length: 128
  • Epochs: 1
  • Learning rate: 5e-05
  • LoRA: r=16, alpha=32

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

base = "unsloth/Qwen3-4B-Instruct-2507"
adapter = "your_id/your-repo"

tokenizer = AutoTokenizer.from_pretrained(base)
model = AutoModelForCausalLM.from_pretrained(
    base,
    torch_dtype=torch.float16,
    device_map="auto",
)
model = PeftModel.from_pretrained(model, adapter)

Sources & Terms (IMPORTANT)

Training data: u-10bei/structured_data_with_cot_dataset_512_v5

Dataset License: MIT License. This dataset is used and distributed under the terms of the MIT License. Compliance: Users must comply with the MIT license (including copyright notice) and the base model's original terms of use.