File size: 2,787 Bytes
d690ee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-cit-do0.2-wd0.001-tr5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-cit-do0.2-wd0.001-tr5
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the SF 200 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8701
- Wer: 28.8330
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 1.0205 | 0.8889 | 10 | 0.8452 | 34.3249 |
| 0.7299 | 1.7778 | 20 | 0.6455 | 31.1213 |
| 0.48 | 2.6667 | 30 | 0.5552 | 30.4348 |
| 0.291 | 3.5556 | 40 | 0.5288 | 30.6636 |
| 0.1931 | 4.4444 | 50 | 0.5479 | 28.3753 |
| 0.107 | 5.3333 | 60 | 0.6104 | 29.0618 |
| 0.0622 | 6.2222 | 70 | 0.6509 | 28.8330 |
| 0.0271 | 7.1111 | 80 | 0.7900 | 30.4348 |
| 0.0198 | 8.0 | 90 | 0.7246 | 30.2059 |
| 0.0176 | 8.8889 | 100 | 0.6992 | 27.6888 |
| 0.0163 | 9.7778 | 110 | 0.7896 | 29.5195 |
| 0.0087 | 10.6667 | 120 | 0.7793 | 30.4348 |
| 0.0092 | 11.5556 | 130 | 0.8213 | 28.8330 |
| 0.0063 | 12.4444 | 140 | 0.8369 | 29.5195 |
| 0.0038 | 13.3333 | 150 | 0.8262 | 29.7483 |
| 0.0036 | 14.2222 | 160 | 0.8506 | 28.3753 |
| 0.0021 | 15.1111 | 170 | 0.8647 | 29.5195 |
| 0.0017 | 16.0 | 180 | 0.8608 | 29.5195 |
| 0.0012 | 16.8889 | 190 | 0.8662 | 28.8330 |
| 0.001 | 17.7778 | 200 | 0.8701 | 28.8330 |
### Framework versions
- Transformers 4.41.1
- Pytorch 1.13.1+cu117
- Datasets 2.19.1
- Tokenizers 0.19.1
|