rukundob451's picture
End of training
42987bf verified
|
raw
history blame
2.75 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-tiny-patch16-224-finetuned-papsmear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8529411764705882

deit-tiny-patch16-224-finetuned-papsmear

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4389
  • Accuracy: 0.8529

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8247 0.9870 19 1.6199 0.3015
1.415 1.9740 38 1.2594 0.5147
1.06 2.9610 57 1.0316 0.6471
0.8808 4.0 77 1.0088 0.625
0.7646 4.9870 96 0.8211 0.6985
0.6798 5.9740 115 0.7383 0.7132
0.554 6.9610 134 0.6477 0.7574
0.5358 8.0 154 0.5824 0.7647
0.4689 8.9870 173 0.5571 0.7794
0.4217 9.9740 192 0.5506 0.7868
0.4063 10.9610 211 0.4987 0.8235
0.3827 12.0 231 0.4793 0.8088
0.3095 12.9870 250 0.4724 0.8015
0.3521 13.9740 269 0.4389 0.8529
0.3397 14.8052 285 0.4383 0.8456

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1