File size: 3,036 Bytes
9c3a994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# -*- coding: utf-8 -*-

import torch.nn as nn
from typing import Tuple, List, Optional
import pytorch_lightning as pl


class Point2MeshOutput(object):
    def __init__(self):
        self.mesh_v = None
        self.mesh_f = None
        self.center = None
        self.pc = None


class Latent2MeshOutput(object):

    def __init__(self):
        self.mesh_v = None
        self.mesh_f = None


class AlignedMeshOutput(object):

    def __init__(self):
        self.mesh_v = None
        self.mesh_f = None
        self.surface = None
        self.image = None
        self.text: Optional[str] = None
        self.shape_text_similarity: Optional[float] = None
        self.shape_image_similarity: Optional[float] = None


class ShapeAsLatentPLModule(pl.LightningModule):
    latent_shape: Tuple[int]

    def encode(self, surface, *args, **kwargs):
        raise NotImplementedError

    def decode(self, z_q, *args, **kwargs):
        raise NotImplementedError

    def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
        raise NotImplementedError

    def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
        raise NotImplementedError


class ShapeAsLatentModule(nn.Module):
    latent_shape: Tuple[int, int]

    def __init__(self, *args, **kwargs):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError

    def decode(self, *args, **kwargs):
        raise NotImplementedError

    def query_geometry(self, *args, **kwargs):
        raise NotImplementedError


class AlignedShapeAsLatentPLModule(pl.LightningModule):
    latent_shape: Tuple[int]

    def set_shape_model_only(self):
        raise NotImplementedError

    def encode(self, surface, *args, **kwargs):
        raise NotImplementedError

    def decode(self, z_q, *args, **kwargs):
        raise NotImplementedError

    def latent2mesh(self, latents, *args, **kwargs) -> List[Latent2MeshOutput]:
        raise NotImplementedError

    def point2mesh(self, *args, **kwargs) -> List[Point2MeshOutput]:
        raise NotImplementedError


class AlignedShapeAsLatentModule(nn.Module):
    shape_model: ShapeAsLatentModule
    latent_shape: Tuple[int, int]

    def __init__(self, *args, **kwargs):
        super().__init__()

    def set_shape_model_only(self):
        raise NotImplementedError

    def encode_image_embed(self, *args, **kwargs):
        raise NotImplementedError

    def encode_text_embed(self, *args, **kwargs):
        raise NotImplementedError

    def encode_shape_embed(self, *args, **kwargs):
        raise NotImplementedError


class TexturedShapeAsLatentModule(nn.Module):

    def __init__(self, *args, **kwargs):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError

    def decode(self, *args, **kwargs):
        raise NotImplementedError

    def query_geometry(self, *args, **kwargs):
        raise NotImplementedError

    def query_color(self, *args, **kwargs):
        raise NotImplementedError