File size: 2,291 Bytes
ee5f14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2839
- Accuracy: 0.9091
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 7 | 0.6566 | 0.7273 |
| No log | 2.0 | 14 | 0.6210 | 0.6364 |
| No log | 3.0 | 21 | 0.5906 | 0.6364 |
| No log | 4.0 | 28 | 0.5502 | 0.7273 |
| No log | 5.0 | 35 | 0.5382 | 0.7273 |
| No log | 6.0 | 42 | 0.5167 | 0.7273 |
| No log | 7.0 | 49 | 0.4885 | 0.7273 |
| No log | 8.0 | 56 | 0.4157 | 0.8182 |
| No log | 9.0 | 63 | 0.5560 | 0.7273 |
| No log | 10.0 | 70 | 0.2520 | 0.9091 |
| No log | 11.0 | 77 | 0.2724 | 0.9091 |
| No log | 12.0 | 84 | 0.2758 | 0.9091 |
| No log | 13.0 | 91 | 0.2935 | 0.8182 |
| No log | 14.0 | 98 | 0.2786 | 0.9091 |
| 0.2969 | 15.0 | 105 | 0.2839 | 0.9091 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.1+cu124
- Datasets 2.19.0
- Tokenizers 0.19.1
|