File size: 569 Bytes
d2b8ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import streamlit as st
import tensorflow as tf

# Load your model
model = tf.keras.models.load_model('best_dnn_model.h5')

# Define a function to make predictions
def predict(input_data):
    prediction = model.predict(input_data)
    return prediction

# Streamlit app
st.title('Bank Churn Prediction')

user_input = st.text_input('Enter your input data')

if st.button('Predict'):
    input_data = preprocess_user_input(user_input)  # Implementing the function based on preprocessing logic
    prediction = predict(input_data)
    st.write('Prediction:', prediction)