metadata
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Llama-3-8B-Magpie-Mix-RC
results: []
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Magpie-Align/Magpie-Reasoning-150K
type: sharegpt
conversation: llama3
- path: Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese
type: sharegpt
conversation: llama3
- path: Magpie-Align/Magpie-Pro-MT-300K-v0.1
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: /home/cc/axolotl/axolotl_out/Llama-3-8B-base-magpie-RC
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-base-150KR-Llama3-Pro-MT-300K-C
wandb_log_model:
hub_model_id: Magpie-Align/Llama-3-8B-Magpie-Mix-RC
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
Llama-3-8B-Magpie-Mix-RC
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 98
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8616 | 0.0019 | 1 | 0.8870 |
0.5554 | 0.2013 | 106 | 0.5568 |
0.5067 | 0.4027 | 212 | 0.5065 |
0.4728 | 0.6040 | 318 | 0.4865 |
0.4681 | 0.8054 | 424 | 0.4740 |
0.4563 | 1.0067 | 530 | 0.4662 |
0.4115 | 1.1944 | 636 | 0.4642 |
0.3993 | 1.3957 | 742 | 0.4620 |
0.4048 | 1.5971 | 848 | 0.4613 |
0.4167 | 1.7984 | 954 | 0.4611 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1