Safetensors
qwen2
File size: 8,536 Bytes
19d7e6b
1abdd41
7269009
1abdd41
19d7e6b
 
37c1c7e
19d7e6b
 
 
 
eebb800
19d7e6b
 
fd8b545
19d7e6b
 
37c1c7e
9d79868
 
 
fd8b545
37c1c7e
19d7e6b
37c1c7e
19d7e6b
9d79868
deda00d
9d79868
fd8b545
 
19d7e6b
 
37c1c7e
19d7e6b
 
 
 
 
 
 
fd8b545
19d7e6b
 
 
fd8b545
19d7e6b
 
 
 
 
 
fd8b545
19d7e6b
 
 
 
 
 
 
 
 
 
fd8b545
19d7e6b
 
fd8b545
19d7e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8b545
19d7e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8b545
19d7e6b
 
 
 
fd8b545
19d7e6b
 
 
6d11496
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: other
license_name: qwen-research
license_link: https://huggingface.co/MadeAgents/Hammer2.0-3b/blob/main/LICENSE
datasets:
- Salesforce/xlam-function-calling-60k
- MadeAgents/xlam-irrelevance-7.5k
base_model:
- Qwen/Qwen2.5-3B-Instruct
---
## Introduction
We're excited to release lightweight Hammer 2.0 models ([0.5B](https://huggingface.co/MadeAgents/Hammer2.0-0.5b) ,   [1.5B](https://huggingface.co/MadeAgents/Hammer2.0-1.5b) ,   [3B](https://huggingface.co/MadeAgents/Hammer2.0-3b) ,  and  [7B](https://huggingface.co/MadeAgents/Hammer2.0-7b)) with strong function calling capability, which empower developers to build personalized, on-device agentic applications.

## Model Details
Hammer2.0 finetuned based on [Qwen 2.5 series](https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e) and [Qwen 2.5 coder series](https://huggingface.co/collections/Qwen/qwen25-coder-66eaa22e6f99801bf65b0c2f) using function masking techniques. It's trained using the [APIGen Function Calling Datasets](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) containing 60,000 samples, supplemented by [xlam-irrelevance-7.5k](https://huggingface.co/datasets/MadeAgents/xlam-irrelevance-7.5k) we generated. Hammer2.0 has achieved exceptional performances across numerous function calling benchmarks. For more details, please refer to [Hammer: Robust Function-Calling for On-Device Language Models via Function Masking](https://arxiv.org/abs/2410.04587) and [Hammer GitHub repository](https://github.com/MadeAgents/Hammer) .

## Evaluation
The evaluation results of Hammer 2.0 models on the Berkeley Function-Calling Leaderboard (BFCL-v3) are presented in the following table:
<div style="text-align: center;">
    <img src="v2_figures/bfcl.PNG" alt="overview" width="1000" style="margin: auto;">
</div>

Our Hammer 2.0 series consistently achieves corresponding best performance at comparable scales. The 7B model outperforms most function calling enchanced models, and the 1.5B model also achieves unexpected performance.

In addition, we evaluated the Hammer 2.0 models on other academic benchmarks to further demonstrate the generalization ability of our models.

<div style="text-align: center;">
    <img src="v2_figures/others-v2.PNG" alt="overview" width="1000" style="margin: auto;">
</div>

Hammer 2.0 models showcase highly stable performance, suggesting the robustness of Hammer 2.0 series. In contrast, the baseline approaches display varying levels of effectiveness. 

## Requiements
The code of Hammer 2.0 models have been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`.

## How to Use
This is a simple example of how to use our model.
~~~python
import json
import torch 
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "MadeAgents/Hammer2.0-3b"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name) 

# Please use our provided instruction prompt for best performance
TASK_INSTRUCTION = """You are a tool calling assistant. In order to complete the user's request, you need to select one or more appropriate tools from the following tools and fill in the correct values for the tool parameters. Your specific tasks are:
1. Make one or more function/tool calls to meet the request based on the question.
2. If none of the function can be used, point it out and refuse to answer.
3. If the given question lacks the parameters required by the function, also point it out.
"""

FORMAT_INSTRUCTION = """
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please directly output an empty list '[]'
```
[
    {"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
    ... (more tool calls as required)
]
```
"""

# Define the input query and available tools
query = "Where can I find live giveaways for beta access and games? And what's the weather like in New York, US?" 

live_giveaways_by_type = {
    "name": "live_giveaways_by_type",
    "description": "Retrieve live giveaways from the GamerPower API based on the specified type.",
    "parameters": {
        "type": "object",
        "properties": {
            "type": {
                "type": "string",
                "description": "The type of giveaways to retrieve (e.g., game, loot, beta).",
                "default": "game"
            }
        },
        "required": ["type"]
    }
}
get_current_weather={
        "name": "get_current_weather",
        "description": "Get the current weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA"
                }
            },
            "required": ["location"]
        }
    }
get_stock_price={
        "name": "get_stock_price",
        "description": "Retrieves the current stock price for a given ticker symbol. The ticker symbol must be a valid symbol for a publicly traded company on a major US stock exchange like NYSE or NASDAQ. The tool will return the latest trade price in USD. It should be used when the user asks about the current or most recent price of a specific stock. It will not provide any other information about the stock or company.",
        "parameters": {
            "type": "object",
            "properties": {
                "ticker": {
                    "type": "string",
                    "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
                }
            },
            "required": ["ticker"]
        }
    }

def convert_to_format_tool(tools):
    ''''''
    if isinstance(tools, dict):
        format_tools = {
            "name": tools["name"],
            "description": tools["description"],
            "parameters": tools["parameters"].get("properties", {}),
        }
        required = tools["parameters"].get("required", [])
        for param in required:
            format_tools["parameters"][param]["required"] = True
        for param in format_tools["parameters"].keys():
            if "default" in format_tools["parameters"][param]:
                default = format_tools["parameters"][param]["default"]
                format_tools["parameters"][param]["description"]+=f"default is \'{default}\'"
        return format_tools
    elif isinstance(tools, list):
        return [convert_to_format_tool(tool) for tool in tools]
    else:
        return tools
# Helper function to build the input prompt for our model
def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str):
    prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
    prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(tools)}\n[END OF AVAILABLE TOOLS]\n\n"
    prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
    prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
    return prompt
   
# Build the input and start the inference
openai_format_tools = [live_giveaways_by_type, get_current_weather,get_stock_price]
format_tools = convert_to_format_tool(openai_format_tools)
content = build_prompt(TASK_INSTRUCTION, FORMAT_INSTRUCTION, format_tools, query)

messages=[
    { 'role': 'user', 'content': content}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

# tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
~~~


## License Information

This model is subject to two different licenses:

1. **Base Model (Qwen)**: The base model is licensed under the [Qwen Research License](https://huggingface.co/MadeAgents/Hammer2.0-3b/blob/main/LICENSE). It is intended for non-commercial use only.
2. **Fine-tuning and Modifications**: The fine-tuning data and modifications are licensed under the [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/), allowing for sharing and adaptation with proper attribution.