File size: 1,864 Bytes
0f46036
 
 
 
 
 
 
 
 
c5f5266
 
 
 
 
 
0f46036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5f5266
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: finetuned_on_citesum_bart_text_summarisation
  results: []
datasets:
- yuningm/citesum
language:
- en
library_name: transformers
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned_on_citesum_bart_text_summarisation

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3597
- Rouge1: 0.3541
- Rouge2: 0.1548
- Rougel: 0.2659
- Rougelsum: 0.2657
- Gen Len: 67.0143

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 350  | 0.3449          | 0.3492 | 0.1554 | 0.2685 | 0.268     | 68.7357 |
| 0.5359        | 2.0   | 700  | 0.3458          | 0.3516 | 0.1531 | 0.2647 | 0.2646    | 67.0714 |
| 0.2219        | 3.0   | 1050 | 0.3597          | 0.3541 | 0.1548 | 0.2659 | 0.2657    | 67.0143 |


### Framework versions

- Transformers 4.30.0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3