File size: 1,936 Bytes
b43c680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed42225
 
 
 
b43c680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed42225
 
b43c680
 
 
 
42ebe3c
b43c680
 
 
ed42225
 
 
 
 
 
 
b43c680
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: zero-shot_text_classification_fine_tuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zero-shot_text_classification_fine_tuned

This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6329
- Accuracy: 0.8235
- F1: 0.8241
- Log Loss: 0.6329

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Log Loss |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|
| No log        | 1.0   | 375  | 1.1586          | 0.5505   | 0.5121 | 1.1586   |
| 1.4748        | 2.0   | 750  | 0.7917          | 0.7495   | 0.7506 | 0.7917   |
| 0.7813        | 3.0   | 1125 | 0.6692          | 0.798    | 0.7989 | 0.6692   |
| 0.5346        | 4.0   | 1500 | 0.6359          | 0.811    | 0.8105 | 0.6359   |
| 0.5346        | 5.0   | 1875 | 0.6329          | 0.8235   | 0.8241 | 0.6329   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0