File size: 8,730 Bytes
2cbf616 a0c5f82 2cbf616 9336925 2cbf616 a0c5f82 2cbf616 a0c5f82 2cbf616 a0c5f82 2cbf616 a0c5f82 9bbab52 2cbf616 a0c5f82 2cbf616 9336925 b8204f4 2cbf616 4ac1f20 2cbf616 a0c5f82 2ea2657 2cbf616 4b48f8f 2cbf616 6081bb6 aecd90b 6081bb6 2ea2657 2cbf616 b8204f4 2cbf616 b8204f4 2cbf616 a0c5f82 2cbf616 a0c5f82 2cbf616 a0c5f82 2cbf616 6081bb6 2cbf616 a0c5f82 9336925 c43a294 9336925 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import amfm_decompy.basic_tools as basic
import amfm_decompy.pYAAPT as pYAAPT
from dataclasses import dataclass
from typing import Dict, List, Optional
import numpy as np
import torch
import dataclasses
import parselmouth
from transformers import PreTrainedModel,PretrainedConfig, FeatureExtractionMixin
from datasets import Dataset
from scipy.signal import medfilt
import scipy.interpolate as scipy_interp
@dataclass
class SpeakerStats:
f0_mean: float
f0_std: float
intensity_mean: float
intensity_std: float
@classmethod
def from_features(cls, f0_values: List[np.ndarray], intensity_values: List[np.ndarray]):
"""Calculate stats from a list of features"""
# Convert lists to numpy arrays
f0_arrays = [np.array(f0) for f0 in f0_values]
intensity_arrays = [np.array(i) for i in intensity_values]
# Now we can use numpy operations
f0_concat = np.concatenate([f0[f0 != 0] for f0 in f0_arrays])
intensity_concat = np.concatenate(intensity_arrays)
return cls(
f0_mean=float(np.mean(f0_concat)),
f0_std=float(np.std(f0_concat)),
intensity_mean=float(np.mean(intensity_concat)),
intensity_std=float(np.std(intensity_concat))
)
class ProsodyConfig(PretrainedConfig):
"""Configuration class for prosody preprocessing"""
model_type = "prosody_preprocessor"
def __init__(
self,
sampling_rate: int = 16000,
frame_length: float = 20.0, # in ms
frame_space: float = 5.0, # in ms
torch_dtype: str = "float32", # Add default torch_dtype
**kwargs
):
super().__init__(torch_dtype=torch_dtype, **kwargs) # Pass torch_dtype to parent
self.sampling_rate = sampling_rate
self.frame_length = frame_length
self.frame_space = frame_space
class ProsodyPreprocessor(FeatureExtractionMixin):
config_class = ProsodyConfig
def __init__(self,
sampling_rate: int = 16000,
frame_length: float = 20.0, # in ms
frame_space: float = 5.0, # in ms
torch_dtype: str = "float32", # Add default torch_dtype
config: Optional[ProsodyConfig] = None,
**kwargs):
# config = config or ProsodyConfig()
super().__init__()
self.config = config
self.speaker_stats: Dict[str, SpeakerStats] = {}
self.sampling_rate = sampling_rate
self.frame_length = frame_length
self.frame_space = frame_space
def extract_features(self, audio):
"""Extract F0 and intensity features"""
# Override the original method to fix a bug
pYAAPT.PitchObj.interpolate = interpolate
audio = torch.Tensor(audio)
if audio.dim() == 1:
audio = audio.unsqueeze(0)
f0, f0_interp = self._get_f0(audio)
f0 = f0[0, 0, :]
f0_interpolated = f0_interp[0, 0, :]
f0 = f0[6:]
f0_interpolated = f0_interpolated[6:]
sound = parselmouth.Sound(audio.numpy(), sampling_frequency=self.sampling_rate, start_time=0)
# Extract intensity at 200Hz
intensity = sound.to_intensity(time_step=1/200.0)
intensity_values = intensity.values.T.flatten()
# Ensure same length
min_len = min(len(f0), len(intensity))
f0 = f0[:min_len]
f0_interpolated = f0_interpolated[:min_len]
intensity_values = intensity_values[:min_len]
intensity_values[intensity_values < 20] = 20
return {
"f0": f0,
"f0_interp": f0_interpolated,
"intensity": intensity_values,
}
def collect_stats(self, dataset: Dataset, num_proc: int = 4, batch_size: int = 32) -> Dict[str, SpeakerStats]:
"""First pass: collect speaker statistics using dataset.map"""
def extract_features_batch(examples):
features_list = []
for audio in examples['audio']:
features = self.extract_features(audio)
features_list.append(features)
return {
'f0': [f['f0'] for f in features_list],
'intensity': [f['intensity'] for f in features_list],
'speaker_id': examples['speaker_id']
}
features_dataset = dataset.map(
extract_features_batch,
batched=True,
batch_size=batch_size,
num_proc=num_proc,
# load_from_cache_file=False
remove_columns=dataset.column_names
)
speaker_features = {}
for item in features_dataset:
speaker_id = item['speaker_id']
if speaker_id not in speaker_features:
speaker_features[speaker_id] = {'f0': [], 'intensity': []}
speaker_features[speaker_id]['f0'].append(item['f0'])
speaker_features[speaker_id]['intensity'].append(item['intensity'])
self.speaker_stats = {
spk: SpeakerStats.from_features(
feats['f0'],
feats['intensity']
)
for spk, feats in speaker_features.items()
}
return features_dataset, self.speaker_stats
def save_stats(self, path: str):
"""Save speaker stats to file"""
stats_dict = {
spk: dataclasses.asdict(stats)
for spk, stats in self.speaker_stats.items()
}
torch.save(stats_dict, path)
@classmethod
def load_stats(cls, path: str) -> Dict[str, SpeakerStats]:
"""Load speaker stats from file"""
stats_dict = torch.load(path)
return {
spk: SpeakerStats(**stats)
for spk, stats in stats_dict.items()
}
def _get_f0(self, audio: torch.Tensor):
"""Extract F0 using YAAPT."""
to_pad = int(self.frame_length / 1000 * self.sampling_rate) // 2
f0s = []
f0s_interp = []
for y in audio.numpy().astype(np.float64):
y_pad = np.pad(y.squeeze(), (to_pad, to_pad), "constant", constant_values=0)
signal = basic.SignalObj(y_pad, self.sampling_rate)
pitch = pYAAPT.yaapt(
signal,
frame_length=self.frame_length,
frame_space=self.frame_space,
nccf_thresh1=0.25,
tda_frame_length=25.0
)
f0s_interp.append(pitch.samp_interp[None, None, :])
f0s.append(pitch.samp_values[None, None, :])
f0 = np.vstack(f0s)
f0_interp = np.vstack(f0s_interp)
# Apply frequency threshold
f0[f0 > 500] = 0
f0_interp[f0_interp > 500] = 0
f0[f0 < 0] = 0
f0_interp[f0_interp < 0] = 0
return f0, f0_interp
# def save_pretrained(self, save_directory: str, **kwargs):
# """Save the preprocessor configuration."""
# self.config.save_pretrained(save_directory)
#
# def _load_pretrained_model(self, **kwargs):
# """Override _load_pretrained_model to load speaker stats"""
# # self.speaker_stats = {
# # spk: SpeakerStats(**stats)
# # for spk, stats in state_dict.items()
# # }
def interpolate(self):
pitch = np.zeros((self.nframes))
pitch[:] = self.samp_values
pitch2 = medfilt(self.samp_values, self.SMOOTH_FACTOR)
# This part in the original code is kind of confused and caused
# some problems with the extrapolated points before the first
# voiced frame and after the last voiced frame. So, I made some
# small modifications in order to make it work better.
edges = self.edges_finder(pitch)
first_sample = pitch[0]
last_sample = pitch[-1]
if len(np.nonzero(pitch2)[0]) < 2:
pitch[pitch == 0] = self.PTCH_TYP
else:
nz_pitch = pitch2[pitch2 > 0]
pitch2 = scipy_interp.pchip(np.nonzero(pitch2)[0],
nz_pitch)(range(self.nframes))
pitch[pitch == 0] = pitch2[pitch == 0]
if self.SMOOTH > 0:
pitch = medfilt(pitch, self.SMOOTH_FACTOR)
try:
if first_sample == 0:
# This if statement fixes the bug that caused the whole f0 to be flattened
if edges[0] == 0:
edges[0] = 1
pitch[:edges[0]-1] = pitch[edges[0]]
if last_sample == 0:
pitch[edges[-1]+1:] = pitch[edges[-1]]
except:
pass
self.samp_interp = pitch
|