File size: 8,231 Bytes
f7009b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import sys, os, json
root = os.sep + os.sep.join(__file__.split(os.sep)[1:__file__.split(os.sep).index("Recurrent-Parameter-Generation")+1])
sys.path.append(root)
os.chdir(root)
with open("./workspace/config.json", "r") as f:
    additional_config = json.load(f)
USE_WANDB = additional_config["use_wandb"]

# set global seed
import random
import numpy as np
import torch
seed = SEED = 999
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
np.random.seed(seed)
random.seed(seed)

# other
import math
import random
import warnings
from _thread import start_new_thread
warnings.filterwarnings("ignore", category=UserWarning)
if USE_WANDB: import wandb
# torch
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn import functional as F
from torch.cuda.amp import autocast
# model
from model.pdiff import PDiff as Model
from model.pdiff import OneDimVAE as VAE
from model.diffusion import DDPMSampler, DDIMSampler
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR, SequentialLR
from accelerate.utils import DistributedDataParallelKwargs
from accelerate.utils import AutocastKwargs
from accelerate import Accelerator
# dataset
from dataset import Cifar100_ResNet18BN as Dataset
from torch.utils.data import DataLoader




config = {
    "seed": SEED,
    # dataset setting
    "dataset": Dataset,
    "sequence_length": 'auto',
    # train setting
    "batch_size": 50,
    "num_workers": 25,
    "total_steps": 10000,
    "vae_steps": 1000,
    "learning_rate": 0.0001,
    "vae_learning_rate": 0.00002,
    "weight_decay": 0.01,
    "save_every": 10000//1,
    "print_every": 50,
    "autocast": lambda i: True,
    "checkpoint_save_path": "./checkpoint",
    # test setting
    "test_batch_size": 1,  # fixed, don't change this
    "generated_path": Dataset.generated_path,
    "test_command": Dataset.test_command,
    # to log
    "model_config": {
        # diffusion config
        "layer_channels": [1, 64, 128, 256, 512, 256, 128, 64, 1],
        "model_dim": 128,
        "kernel_size": 7,
        "sample_mode": DDPMSampler,
        "beta": (0.0001, 0.02),
        "T": 1000,
        # vae config
        "channels": [64, 256, 384, 512, 64],
    },
    "tag": "compare_pdiff_resnet18bn_vae",
}




# Data
divide_slice_length = int(2 ** len(config["model_config"]["channels"]))
print('==> Preparing data..')
train_set = config["dataset"](
    dim_per_token=divide_slice_length,
    granularity=0,
    pe_granularity=0,
    fill_value=0.
)
print("Dataset length:", train_set.real_length)
print("input shape:", train_set[0][0].flatten().shape)
if config["sequence_length"] == "auto":
    config["sequence_length"] = train_set.sequence_length * divide_slice_length
    print(f"sequence length: {config['sequence_length']}")
train_loader = DataLoader(
    dataset=train_set,
    batch_size=config["batch_size"],
    num_workers=config["num_workers"],
    persistent_workers=True,
    drop_last=True,
    shuffle=True,
)

# Model
print('==> Building model..')
Model.config = config["model_config"]
model = Model(sequence_length=config["sequence_length"])  # model setting is in model
vae = VAE(d_model=config["model_config"]["channels"],
          d_latent=config["model_config"]["model_dim"],
          sequence_length=config["sequence_length"],
          kernel_size=config["model_config"]["kernel_size"])

# Optimizer
print('==> Building optimizer..')
vae_optimizer = optim.AdamW(
    params=vae.parameters(),
    lr=config["vae_learning_rate"],
    weight_decay=config["weight_decay"],
)
optimizer = optim.AdamW(
    params=model.parameters(),
    lr=config["learning_rate"],
    weight_decay=config["weight_decay"],
)
vae_scheduler = CosineAnnealingLR(
    optimizer=vae_optimizer,
    T_max=config["vae_steps"],
)
scheduler = CosineAnnealingLR(
    optimizer=optimizer,
    T_max=config["total_steps"],
)

# accelerator
if __name__ == "__main__":
    kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
    accelerator = Accelerator(kwargs_handlers=[kwargs,])
    vae, model, vae_optimizer, optimizer, train_loader = \
            accelerator.prepare(vae, model, vae_optimizer, optimizer, train_loader)


# wandb
if __name__ == "__main__" and USE_WANDB and accelerator.is_main_process:
    wandb.login(key=additional_config["wandb_api_key"])
    wandb.init(project="Recurrent-Parameter-Generation", name=config['tag'], config=config,)




# Training
print('==> Defining training..')

def train_vae():
    if not USE_WANDB:
        train_loss = 0
        this_steps = 0
    print("==> Start training vae..")
    vae.train()
    for batch_idx, (param, _) in enumerate(train_loader):
        vae_optimizer.zero_grad()
        # train
        # noinspection PyArgumentList
        with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=config["autocast"](batch_idx))):
            param = param.flatten(start_dim=1)
            loss = vae(x=param, use_var=False, manual_std=0.01, kld_weight=0.01)
        accelerator.backward(loss)
        vae_optimizer.step()
        if accelerator.is_main_process:
            vae_scheduler.step()
        # to logging losses and print and save
        if USE_WANDB and accelerator.is_main_process:
            wandb.log({"vae_loss": loss.item()})
        elif USE_WANDB:
            pass  # don't print
        else:  # not use wandb
            train_loss += loss.item()
            this_steps += 1
            if this_steps % config["print_every"] == 0:
                print('Loss: %.6f' % (train_loss/this_steps))
                this_steps = 0
                train_loss = 0
        if batch_idx >= config["vae_steps"]:
            break

def train():
    if not USE_WANDB:
        train_loss = 0
        this_steps = 0
    print("==> start training..")
    model.train()
    for batch_idx, (param, _) in enumerate(train_loader):
        optimizer.zero_grad()
        # train
        # noinspection PyArgumentList
        with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=config["autocast"](batch_idx))):
            param = param.flatten(start_dim=1)
            with torch.no_grad():
                mu, _ = vae.encode(param)
            loss = model(x=mu)
        accelerator.backward(loss)
        optimizer.step()
        if accelerator.is_main_process:
            scheduler.step()
        # to logging losses and print and save
        if USE_WANDB and accelerator.is_main_process:
            wandb.log({"train_loss": loss.item()})
        elif USE_WANDB:
            pass  # don't print
        else:  # not use wandb
            train_loss += loss.item()
            this_steps += 1
            if this_steps % config["print_every"] == 0:
                print('Loss: %.6f' % (train_loss/this_steps))
                this_steps = 0
                train_loss = 0
        if batch_idx % config["save_every"] == 0 and accelerator.is_main_process:
            os.makedirs(config["checkpoint_save_path"], exist_ok=True)
            state = {"diffusion": accelerator.unwrap_model(model).state_dict(), "vae": vae.state_dict()}
            torch.save(state, os.path.join(config["checkpoint_save_path"], config["tag"]+".pth"))
            generate(save_path=config["generated_path"], need_test=True)
        if batch_idx >= config["total_steps"]:
            break

def generate(save_path=config["generated_path"], need_test=True):
    print("\n==> Generating..")
    model.eval()
    with torch.no_grad():
        mu = model(sample=True)
        prediction = vae.decode(mu)
        generated_norm = prediction.abs().mean()
    print("Generated_norm:", generated_norm.item())
    if USE_WANDB:
        wandb.log({"generated_norm": generated_norm.item()})
    prediction = prediction.view(-1, divide_slice_length)
    train_set.save_params(prediction, save_path=save_path)
    if need_test:
        start_new_thread(os.system, (config["test_command"],))
    model.train()
    return prediction




if __name__ == '__main__':
    train_vae()
    vae = accelerator.unwrap_model(vae)
    train()
    del train_loader  # deal problems by dataloader
    print("Finished Training!")
    exit(0)