File size: 16,160 Bytes
f2ae8ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Iterable, Sequence
import numpy as np
import torch
from monai.engines.evaluator import SupervisedEvaluator
from monai.engines.utils import IterationEvents, default_metric_cmp_fn, default_prepare_batch
from monai.inferers import Inferer, SimpleInferer
from monai.transforms import Transform, reset_ops_id
from monai.utils import ForwardMode, IgniteInfo, RankFilter, min_version, optional_import
from monai.utils.enums import CommonKeys as Keys
from torch.utils.data import DataLoader
rearrange, _ = optional_import("einops", name="rearrange")
if TYPE_CHECKING:
from ignite.engine import Engine, EventEnum
from ignite.metrics import Metric
else:
Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine")
Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric")
EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum")
__all__ = ["Vista3dEvaluator"]
class Vista3dEvaluator(SupervisedEvaluator):
"""
Supervised detection evaluation method with image and label, inherits from ``SupervisedEvaluator`` and ``Workflow``.
Args:
device: an object representing the device on which to run.
val_data_loader: Ignite engine use data_loader to run, must be Iterable, typically be torch.DataLoader.
network: detector to evaluate in the evaluator, should be regular PyTorch `torch.nn.Module`.
epoch_length: number of iterations for one epoch, default to `len(val_data_loader)`.
non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously
with respect to the host. For other cases, this argument has no effect.
prepare_batch: function to parse expected data (usually `image`, `label` and other network args)
from `engine.state.batch` for every iteration, for more details please refer to:
https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html.
iteration_update: the callable function for every iteration, expect to accept `engine`
and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`.
if not provided, use `self._iteration()` instead. for more details please refer to:
https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html.
inferer: inference method that execute model forward on input data, like: SlidingWindow, etc.
postprocessing: execute additional transformation for the model output data.
Typically, several Tensor based transforms composed by `Compose`.
key_val_metric: compute metric when every iteration completed, and save average value to
engine.state.metrics when epoch completed. key_val_metric is the main metric to compare and save the
checkpoint into files.
additional_metrics: more Ignite metrics that also attach to Ignite Engine.
metric_cmp_fn: function to compare current key metric with previous best key metric value,
it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update
`best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`.
val_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like:
CheckpointHandler, StatsHandler, etc.
amp: whether to enable auto-mixed-precision evaluation, default is False.
mode: model forward mode during evaluation, should be 'eval' or 'train',
which maps to `model.eval()` or `model.train()`, default to 'eval'.
event_names: additional custom ignite events that will register to the engine.
new events can be a list of str or `ignite.engine.events.EventEnum`.
event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`.
for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html
#ignite.engine.engine.Engine.register_events.
decollate: whether to decollate the batch-first data to a list of data after model computation,
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.amp.autocast.
"""
def __init__(
self,
device: torch.device,
val_data_loader: Iterable | DataLoader,
network: torch.nn.Module,
epoch_length: int | None = None,
non_blocking: bool = False,
prepare_batch: Callable = default_prepare_batch,
iteration_update: Callable[[Engine, Any], Any] | None = None,
inferer: Inferer | None = None,
postprocessing: Transform | None = None,
key_val_metric: dict[str, Metric] | None = None,
additional_metrics: dict[str, Metric] | None = None,
metric_cmp_fn: Callable = default_metric_cmp_fn,
val_handlers: Sequence | None = None,
amp: bool = False,
mode: ForwardMode | str = ForwardMode.EVAL,
event_names: list[str | EventEnum | type[EventEnum]] | None = None,
event_to_attr: dict | None = None,
decollate: bool = True,
to_kwargs: dict | None = None,
amp_kwargs: dict | None = None,
hyper_kwargs: dict | None = None,
) -> None:
super().__init__(
device=device,
val_data_loader=val_data_loader,
network=network,
epoch_length=epoch_length,
non_blocking=non_blocking,
prepare_batch=prepare_batch,
iteration_update=iteration_update,
postprocessing=postprocessing,
key_val_metric=key_val_metric,
additional_metrics=additional_metrics,
metric_cmp_fn=metric_cmp_fn,
val_handlers=val_handlers,
amp=amp,
mode=mode,
event_names=event_names,
event_to_attr=event_to_attr,
decollate=decollate,
to_kwargs=to_kwargs,
amp_kwargs=amp_kwargs,
)
self.network = network
self.device = device
self.inferer = SimpleInferer() if inferer is None else inferer
self.hyper_kwargs = hyper_kwargs
self.logger.addFilter(RankFilter())
def transform_points(self, point, affine):
"""transform point to the coordinates of the transformed image
point: numpy array [bs, N, 3]
"""
bs, n = point.shape[:2]
point = np.concatenate((point, np.ones((bs, n, 1))), axis=-1)
point = rearrange(point, "b n d -> d (b n)")
point = affine @ point
point = rearrange(point, "d (b n)-> b n d", b=bs)[:, :, :3]
return point
def check_prompts_format(self, label_prompt, points, point_labels):
"""check the format of user prompts
label_prompt: [1,2,3,4,...,B] List of tensors
points: [[[x,y,z], [x,y,z], ...]] List of coordinates of a single object
point_labels: [[1,1,0,...]] List of scalar that matches number of points
"""
# check prompt is given
if label_prompt is None and points is None:
everything_labels = self.hyper_kwargs.get("everything_labels", None)
if everything_labels is not None:
label_prompt = [torch.tensor(_) for _ in everything_labels]
return label_prompt, points, point_labels
else:
raise ValueError("Prompt must be given for inference.")
# check label_prompt
if label_prompt is not None:
if isinstance(label_prompt, list):
if not np.all([len(_) == 1 for _ in label_prompt]):
raise ValueError("Label prompt must be a list of single scalar, [1,2,3,4,...,].")
if not np.all([(x < 255).item() for x in label_prompt]):
raise ValueError("Current bundle only supports label prompt smaller than 255.")
if points is None:
supported_list = list({i + 1 for i in range(132)} - {16, 18, 129, 130, 131})
if not np.all([x in supported_list for x in label_prompt]):
raise ValueError("Undefined label prompt detected. Provide point prompts for zero-shot.")
else:
raise ValueError("Label prompt must be a list, [1,2,3,4,...,].")
# check points
if points is not None:
if point_labels is None:
raise ValueError("Point labels must be given if points are given.")
if not np.all([len(_) == 3 for _ in points]):
raise ValueError("Points must be three dimensional (x,y,z) in the shape of [[x,y,z],...,[x,y,z]].")
if len(points) != len(point_labels):
raise ValueError("Points must match point labels.")
if not np.all([_ in [-1, 0, 1, 2, 3] for _ in point_labels]):
raise ValueError("Point labels can only be -1,0,1 and 2,3 for special flags.")
if label_prompt is not None and points is not None:
if len(label_prompt) != 1:
raise ValueError("Label prompt can only be a single object if provided with point prompts.")
# check point_labels
if point_labels is not None:
if points is None:
raise ValueError("Points must be given if point labels are given.")
return label_prompt, points, point_labels
def _iteration(self, engine: SupervisedEvaluator, batchdata: dict[str, torch.Tensor]) -> dict:
"""
callback function for the Supervised Evaluation processing logic of 1 iteration in Ignite Engine.
Return below items in a dictionary:
- IMAGE: image Tensor data for model input, already moved to device.
- LABEL: label Tensor data corresponding to the image, already moved to device.
- PRED: prediction result of model.
Args:
engine: `SupervisedEvaluator` to execute operation for an iteration.
batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data.
Raises:
ValueError: When ``batchdata`` is None.
"""
if batchdata is None:
raise ValueError("Must provide batch data for current iteration.")
label_set = engine.hyper_kwargs.get("label_set", None)
# this validation label set should be consistent with 'labels.unique()', used to generate fg/bg points
val_label_set = engine.hyper_kwargs.get("val_label_set", label_set)
# If user provide prompts in the inference, input image must contain original affine.
# the point coordinates are from the original_affine space, while image here is after preprocess transforms.
if engine.hyper_kwargs["user_prompt"]:
inputs, label_prompt, points, point_labels = (
batchdata["image"],
batchdata.get("label_prompt", None),
batchdata.get("points", None),
batchdata.get("point_labels", None),
)
labels = None
label_prompt, points, point_labels = self.check_prompts_format(label_prompt, points, point_labels)
inputs = inputs.to(engine.device)
# For N foreground object, label_prompt is [1, N], but the batch number 1 needs to be removed. Convert to [N, 1]
label_prompt = (
torch.as_tensor([label_prompt]).to(inputs.device)[0].unsqueeze(-1) if label_prompt is not None else None
)
# For points, the size can only be [1, K, 3], where K is the number of points for this single foreground object.
if points is not None:
points = torch.as_tensor([points])
points = self.transform_points(
points, np.linalg.inv(inputs.affine[0]) @ inputs.meta["original_affine"][0].numpy()
)
points = torch.from_numpy(points).to(inputs.device)
point_labels = torch.as_tensor([point_labels]).to(inputs.device) if point_labels is not None else None
# If validation with ground truth label available.
else:
inputs, labels = engine.prepare_batch(
batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs
)
# create label prompt, this should be consistent with the label prompt used for training.
if label_set is None:
output_classes = engine.hyper_kwargs["output_classes"]
label_set = np.arange(output_classes).tolist()
label_prompt = torch.tensor(label_set).to(engine.state.device).unsqueeze(-1)
# point prompt is generated withing vista3d, provide empty points
points = torch.zeros(label_prompt.shape[0], 1, 3).to(inputs.device)
point_labels = -1 + torch.zeros(label_prompt.shape[0], 1).to(inputs.device)
# validation for either auto or point.
if engine.hyper_kwargs.get("val_head", "auto") == "auto":
# automatic only validation
# remove val_label_set, vista3d will not sample points from gt labels.
val_label_set = None
else:
# point only validation
label_prompt = None
# put iteration outputs into engine.state
engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: labels}
# execute forward computation
with engine.mode(engine.network):
if engine.amp:
with torch.amp.autocast("cuda", **engine.amp_kwargs):
engine.state.output[Keys.PRED] = engine.inferer(
inputs=inputs,
network=engine.network,
point_coords=points,
point_labels=point_labels,
class_vector=label_prompt,
labels=labels,
label_set=val_label_set,
)
else:
engine.state.output[Keys.PRED] = engine.inferer(
inputs=inputs,
network=engine.network,
point_coords=points,
point_labels=point_labels,
class_vector=label_prompt,
labels=labels,
label_set=val_label_set,
)
inputs = reset_ops_id(inputs)
# Add dim 0 for decollate batch
engine.state.output["label_prompt"] = label_prompt.unsqueeze(0) if label_prompt is not None else None
engine.state.output["points"] = points.unsqueeze(0) if points is not None else None
engine.state.output["point_labels"] = point_labels.unsqueeze(0) if point_labels is not None else None
engine.fire_event(IterationEvents.FORWARD_COMPLETED)
engine.fire_event(IterationEvents.MODEL_COMPLETED)
if torch.cuda.is_available():
torch.cuda.empty_cache()
return engine.state.output
|