Safetensors
File size: 16,208 Bytes
349d756
 
 
 
61fc49d
 
 
 
 
 
 
 
 
349d756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fc49d
 
 
 
 
 
 
 
 
 
 
 
 
 
349d756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fc49d
349d756
61fc49d
349d756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fc49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349d756
 
 
61fc49d
349d756
61fc49d
 
 
 
 
349d756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fc49d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349d756
 
 
61fc49d
349d756
 
 
61fc49d
349d756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61fc49d
 
 
349d756
 
61fc49d
 
 
 
 
 
 
 
 
 
 
349d756
61fc49d
 
349d756
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import torch
import numpy as np
from tqdm import tqdm

def is_str_list(obj): # Checks if it's a list and all elements are strings
    return isinstance(obj, list) and all(isinstance(item, str) for item in obj)

def is_np_list(obj): # Checks if it's a list and all elements are np.ndarray
    return isinstance(obj, list) and all(isinstance(item, np.ndarray) for item in obj)

def is_np_array(obj): # Checks if it's a np.ndarray
    return isinstance(obj, np.ndarray)

class Sent_Retriever:
    def __init__(self, bs=256, use_gpu=True):
        self.bs = bs
        self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")

    def embed_passages(self, passages, prefix=""):
        if prefix != "":
            passages = [prefix + item for item in passages]
        embeddings = []
        with torch.no_grad():
            for i in tqdm(range(0, len(passages), self.bs)):
                batch_passage = passages[i:(i + self.bs)]
                emb = self.model.encode(batch_passage, normalize_embeddings=True)
                embeddings.extend(emb)
        return embeddings

    def score(self, queries, quotes):
        if is_str_list(queries):
            query_emb = np.asarray(self.embed_queries(queries))
        elif is_np_list(queries):
            query_emb = np.asarray(queries)
        elif is_np_array(queries):
            query_emb = queries
        
        if is_str_list(quotes):
            quote_emb = np.asarray(self.embed_quotes(quotes))
        elif is_np_list(quotes):
            quote_emb = np.asarray(quotes)
        elif is_np_array(quotes):
            quote_emb = quotes

        return (query_emb @ quote_emb.T).tolist()

    def get_tok_len(self, text_input):
        return self.model._first_module().tokenizer(
            text=[text_input],
            truncation=False, max_length=False, return_tensors="pt"
        )["input_ids"].size()[-1]


class BGE(Sent_Retriever):
    def __init__(self, bs=256, use_gpu=True, model_path="checkpoint/bge-large-en-v1.5"):
        from sentence_transformers import SentenceTransformer
        super().__init__(bs=bs, use_gpu=use_gpu)
        self.model_path = model_path
        self.model = SentenceTransformer(self.model_path)
        print("[text_wrapper.py - init] Setting up BGE...")
        print("[text_wrapper.py - init] BGE is loaded from '{}'...".format( self.model_path ))
        self.model.eval()
        self.model = self.model.to(self.device)

    def embed_queries(self, queries):
        prefix = "Represent this sentence for searching relevant passages:"
        if isinstance(queries, str): queries = [queries]
        return self.embed_passages(queries, prefix)

    def embed_quotes(self, quotes):
        if isinstance(quotes, str): quotes = [quotes]
        return self.embed_passages(quotes)


class E5(Sent_Retriever):
    def __init__(self, bs=256, use_gpu=True, model_path="checkpoint/e5-large-v2"):
        from sentence_transformers import SentenceTransformer
        super().__init__(bs=bs, use_gpu=use_gpu)
        self.model_path = model_path
        self.model = SentenceTransformer(self.model_path)
        print("[text_wrapper.py - init] Setting up E5...")
        print("[text_wrapper.py - init] E5 is loaded from '{}'...".format( self.model_path ))
        self.model.eval()
        self.model = self.model.to(self.device)

    def embed_queries(self, queries):
        prefix = "query:"
        if isinstance(queries, str): queries = [queries]
        return self.embed_passages(queries, prefix)

    def embed_quotes(self, quotes):
        prefix = "passage: "
        if isinstance(quotes, str): quotes = [quotes]
        return self.embed_passages(quotes, prefix)


class GTE(Sent_Retriever):
    def __init__(self, bs=256, use_gpu=True, model_path="checkpoint/gte-large"):
        from sentence_transformers import SentenceTransformer
        super().__init__(bs=bs, use_gpu=use_gpu)
        self.model_path = model_path
        self.model = SentenceTransformer(self.model_path)
        print("[text_wrapper.py - init] Setting up GTE...")
        print("[text_wrapper.py - init] GTE is loaded from '{}'...".format( self.model_path ))
        self.model.eval()
        self.model = self.model.to(self.device)

    def embed_queries(self, queries):
        if isinstance(queries, str): queries = [queries]
        return self.embed_passages(queries)

    def embed_quotes(self, quotes):
        if isinstance(quotes, str): quotes = [quotes]
        return self.embed_passages(quotes)


class Contriever():
    def __init__(self, bs = 256, use_gpu= True, model_path='checkpoint/contriever-msmarco'):
        from transformers import AutoTokenizer, AutoModel
        self.model_path = model_path
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
        self.model = AutoModel.from_pretrained(self.model_path)
        self.bs = bs
        self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")
        print("[text_wrapper.py - init] Setting up Contriever...")
        print("[text_wrapper.py - init] Contriever is loaded from '{}'...".format( self.model_path ))
        self.model.eval()
        self.model = self.model.to(self.device)

    def mean_pooling(self, token_embeddings, mask):
        token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.)
        sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None]
        return sentence_embeddings

    def embed_queries(self, query):
        return self.embed_passages(query)

    def embed_quotes(self, quotes):
        return self.embed_passages(quotes)

    def embed_passages(self, quotes):
        if isinstance(quotes, str): quotes = [quotes]
        quote_embeddings = []
        with torch.no_grad():
            for i in tqdm(range(0, len(quotes), self.bs)):
                batch_quotes = quotes[i:(i + self.bs)]
                encoded_quotes = self.tokenizer.batch_encode_plus(
                    batch_quotes, return_tensors = "pt",
                    max_length = 512, padding = True, truncation = True)
                encoded_data = {k: v.to(self.device) for k, v in encoded_quotes.items()}
                batched_outputs = self.model(**encoded_data)
                batched_quote_embs = self.mean_pooling(batched_outputs[0], encoded_data['attention_mask'])
                quote_embeddings.extend([q.cpu().detach().numpy() for q in batched_quote_embs])
        return quote_embeddings

    def score(self, queries, quotes):
        if is_str_list(queries):
            query_emb = np.asarray(self.embed_queries(queries))
        elif is_np_list(queries):
            query_emb = np.asarray(queries)
        elif is_np_array(queries):
            query_emb = queries
        
        if is_str_list(quotes):
            quote_emb = np.asarray(self.embed_quotes(quotes))
        elif is_np_list(quotes):
            quote_emb = np.asarray(quotes)
        elif is_np_array(quotes):
            quote_emb = quotes

        return (query_emb @ quote_emb.T).tolist()


class DPR():
    def __init__(self, bs = 256, use_gpu=True, model_path="checkpoint"):
        from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer
        self.model_path = model_path
        self.query_tok = DPRQuestionEncoderTokenizer.from_pretrained(self.model_path +"/dpr-question_encoder-multiset-base")
        self.query_enc = DPRQuestionEncoder.from_pretrained(self.model_path +"/dpr-question_encoder-multiset-base")
        self.ctx_tok = DPRContextEncoderTokenizer.from_pretrained(self.model_path +"/dpr-ctx_encoder-multiset-base")
        self.ctx_enc = DPRContextEncoder.from_pretrained(self.model_path +"/dpr-ctx_encoder-multiset-base")
        self.bs = bs
        print("[text_wrapper.py - init] Setting up DPR...")
        print("[text_wrapper.py - init] DPR is loaded from '{}'...".format( self.model_path ))
        self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")
        self.query_enc.eval()
        self.query_enc = self.query_enc.to(self.device)
        self.ctx_enc.eval()
        self.ctx_enc = self.ctx_enc.to(self.device)

    def embed_queries(self, queries):
        if isinstance(queries, str): queries = [queries]
        query_embeddings = []
        with torch.no_grad():
            for i in tqdm(range(0, len(queries), self.bs)):
                batch_queries = queries[i:(i + self.bs)]
                encoded_query = self.query_tok.batch_encode_plus(
                    batch_queries, truncation=True, padding=True,
                    return_tensors='pt', max_length=512)
                encoded_data = {k : v.cuda() for k, v in encoded_query.items()}
                query_emb = self.query_enc(**encoded_data).pooler_output
                query_emb = [q.cpu().detach().numpy() for q in query_emb]
                query_embeddings.extend(query_emb)
        return query_embeddings

    def embed_quotes(self, quotes):
        if isinstance(quotes, str): quotes = [quotes]
        quote_embeddings = []
        with torch.no_grad():
            for i in tqdm(range(0, len(quotes), self.bs)):
                batch_quotes = quotes[i:(i + self.bs)]
                encoded_ctx = self.ctx_tok.batch_encode_plus(
                    batch_quotes, truncation=True, padding=True,
                    return_tensors='pt', max_length=512)
                encoded_data = {k: v.cuda() for k, v in encoded_ctx.items()}
                quote_emb = self.ctx_enc(**encoded_data).pooler_output
                quote_emb = [q.cpu().detach().numpy() for q in quote_emb]
                quote_embeddings.extend(quote_emb)
        return quote_embeddings

    def score(self, queries, quotes):
        if is_str_list(queries):
            query_emb = np.asarray(self.embed_queries(queries))
        elif is_np_list(queries):
            query_emb = np.asarray(queries)
        elif is_np_array(queries):
            query_emb = queries
        
        if is_str_list(quotes):
            quote_emb = np.asarray(self.embed_quotes(quotes))
        elif is_np_list(quotes):
            quote_emb = np.asarray(quotes)
        elif is_np_array(quotes):
            quote_emb = quotes

        return (query_emb @ quote_emb.T).tolist()


class ColBERTReranker:
    def __init__(self, bs = 256, use_gpu= True, model_path="checkpoint/colbertv2.0"):
        from colbert.modeling.colbert import ColBERT
        from colbert.infra import ColBERTConfig
        from transformers import AutoTokenizer
        self.model_path = model_path
        self.bs = bs
        config = ColBERTConfig(bsize=bs, root='./', query_token_id='[Q]', doc_token_id='[D]')
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
        self.model = ColBERT(name=self.model_path, colbert_config=config)
        self.doc_token_id = self.tokenizer.convert_tokens_to_ids(config.doc_token_id)
        self.query_token_id = self.tokenizer.convert_tokens_to_ids(config.query_token_id)
        self.add_special_tokens = True
        self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")
        print("[text_wrapper.py - init] Setting up ColBERT Reranker...")
        print("[text_wrapper.py - init] ColBERT is loaded from '{}'...".format( self.model_path ))
        self.model.eval()
        self.model = self.model.to(self.device)

    def embed_queries(self, queries):
        if isinstance(queries, str): queries = [queries]
        query_embeddings = []
        query = ['. ' + item for item in queries] # placeholder for query emb
        with torch.no_grad():
            for i in tqdm(range(0, len(queries), self.bs)):
                batch_queries = queries[i:(i + self.bs)]
                encoded_query = self.tokenizer.batch_encode_plus(
                    batch_queries, max_length = 512, padding=True, truncation=True,
                    add_special_tokens=self.add_special_tokens, return_tensors='pt')
                encoded_data = {k: v.to(self.device) for k, v in encoded_query.items()}
                encoded_data['input_ids'][:, 1] = self.query_token_id
                batch_query_emb = self.model.query(encoded_data['input_ids'], encoded_data['attention_mask'])

                for emb, mask in zip(batch_query_emb, encoded_data['attention_mask']):
                    length = mask.sum().item()  # Number of true tokens in this sequence
                    np_emb = emb[:length].cpu().numpy()  # Shape: [L, H]
                    query_embeddings.append(np_emb)      # `L` varies per example
        return query_embeddings

    @staticmethod
    def pad_tok_len(quote_embeddings, pad_value=0):
        lengths = [e.shape[0] for e in quote_embeddings]
        max_len = max(lengths)
        N, H = len(quote_embeddings), quote_embeddings[0].shape[1]
        padded_embeddings = np.full((N, max_len, H), pad_value, dtype=quote_embeddings[0].dtype)
        padded_masks = np.zeros((N, max_len), dtype=np.int64)
        for i, (emb, length) in enumerate(zip(quote_embeddings, lengths)):
            padded_embeddings[i, :length, :] = emb
            padded_masks[i, :length] = 1
        return padded_embeddings, padded_masks

    def embed_quotes(self, quotes, pad_token_len = False):
        quote_embeddings = []
        quote_masks = []
        quotes = ['. ' + quote for quote in quotes]
        with torch.no_grad():
            # placeholder for query emb
            for i in tqdm(range(0, len(quotes), self.bs)):
                batch_quotes = quotes[i:(i + self.bs)]
                encoded_quotes = self.tokenizer.batch_encode_plus(
                    batch_quotes, return_tensors = "pt",
                    max_length = 512, padding = True, truncation = True)
                encoded_data = {k: v.to(self.device) for k, v in encoded_quotes.items()}
                encoded_data['input_ids'][:, 1] = self.doc_token_id
                # bz x # max num_token in batch x 128
                batched_quote_embs = self.model.doc(encoded_data['input_ids'], encoded_data['attention_mask'])

                for emb, mask in zip(batched_quote_embs, encoded_data['attention_mask']):
                    length = mask.sum().item()  # Number of true tokens in this sequence
                    np_emb = emb[:length].cpu().numpy()  # Shape: [L, H]
                    quote_embeddings.append(np_emb)      # `L` varies per example

        # max length of quotes could differ between different batches
        if pad_token_len:
            quote_embeddings, quote_masks = self.pad_tok_len(quote_embeddings)
            return quote_embeddings, quote_masks
        return quote_embeddings

    @staticmethod
    def colbert_score(query_embed, quote_embeddings, quote_masks):
        Q, H = query_embed.shape # [Q, H]
        N, L, _ = quote_embeddings.shape # [N, L, H]
        query_expanded = query_embed[:, np.newaxis, np.newaxis, :]         # [Q, 1, 1, H]
        quote_expanded = quote_embeddings[np.newaxis, :, :, :]             # [1, N, L, H]
        sim = np.matmul(query_expanded, np.transpose(quote_expanded, (0 ,1 ,3 ,2)))  # (Q, N, 1, L)
        sim = np.einsum('qh,nlh->qnl', query_embed, quote_embeddings)      # [Q, N, L]
        sim = np.where(quote_masks[np.newaxis, :, : ]==1, sim, -1e9)   # Mask invalid tokens [Q, N, L]
        maxsim = sim.max(-1)   # MaxSim: For each query token, take max over quote tokens [Q, N]
        scores = maxsim.sum(axis=0)  # Aggregate (sum over query tokens) [N]
        return scores

    def score(self, queries, quotes):
        if is_str_list(queries):
            query_embed = self.embed_queries(queries)
        elif is_np_list(queries):
            query_embed = queries

        if is_str_list(quotes):
            quote_embed, quote_masks = self.embed_quotes(quotes, pad_token_len=True)
        elif is_np_list(quotes):
            quote_embed, quote_masks = self.pad_tok_len(quotes)

        scores_list = []
        for q_embed in query_embed:
            scores = self.colbert_score(q_embed, quote_embed, quote_masks)
            scores_list.append(scores.tolist())
        return scores_list