File size: 16,208 Bytes
349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 61fc49d 349d756 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import torch
import numpy as np
from tqdm import tqdm
def is_str_list(obj): # Checks if it's a list and all elements are strings
return isinstance(obj, list) and all(isinstance(item, str) for item in obj)
def is_np_list(obj): # Checks if it's a list and all elements are np.ndarray
return isinstance(obj, list) and all(isinstance(item, np.ndarray) for item in obj)
def is_np_array(obj): # Checks if it's a np.ndarray
return isinstance(obj, np.ndarray)
class Sent_Retriever:
def __init__(self, bs=256, use_gpu=True):
self.bs = bs
self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")
def embed_passages(self, passages, prefix=""):
if prefix != "":
passages = [prefix + item for item in passages]
embeddings = []
with torch.no_grad():
for i in tqdm(range(0, len(passages), self.bs)):
batch_passage = passages[i:(i + self.bs)]
emb = self.model.encode(batch_passage, normalize_embeddings=True)
embeddings.extend(emb)
return embeddings
def score(self, queries, quotes):
if is_str_list(queries):
query_emb = np.asarray(self.embed_queries(queries))
elif is_np_list(queries):
query_emb = np.asarray(queries)
elif is_np_array(queries):
query_emb = queries
if is_str_list(quotes):
quote_emb = np.asarray(self.embed_quotes(quotes))
elif is_np_list(quotes):
quote_emb = np.asarray(quotes)
elif is_np_array(quotes):
quote_emb = quotes
return (query_emb @ quote_emb.T).tolist()
def get_tok_len(self, text_input):
return self.model._first_module().tokenizer(
text=[text_input],
truncation=False, max_length=False, return_tensors="pt"
)["input_ids"].size()[-1]
class BGE(Sent_Retriever):
def __init__(self, bs=256, use_gpu=True, model_path="checkpoint/bge-large-en-v1.5"):
from sentence_transformers import SentenceTransformer
super().__init__(bs=bs, use_gpu=use_gpu)
self.model_path = model_path
self.model = SentenceTransformer(self.model_path)
print("[text_wrapper.py - init] Setting up BGE...")
print("[text_wrapper.py - init] BGE is loaded from '{}'...".format( self.model_path ))
self.model.eval()
self.model = self.model.to(self.device)
def embed_queries(self, queries):
prefix = "Represent this sentence for searching relevant passages:"
if isinstance(queries, str): queries = [queries]
return self.embed_passages(queries, prefix)
def embed_quotes(self, quotes):
if isinstance(quotes, str): quotes = [quotes]
return self.embed_passages(quotes)
class E5(Sent_Retriever):
def __init__(self, bs=256, use_gpu=True, model_path="checkpoint/e5-large-v2"):
from sentence_transformers import SentenceTransformer
super().__init__(bs=bs, use_gpu=use_gpu)
self.model_path = model_path
self.model = SentenceTransformer(self.model_path)
print("[text_wrapper.py - init] Setting up E5...")
print("[text_wrapper.py - init] E5 is loaded from '{}'...".format( self.model_path ))
self.model.eval()
self.model = self.model.to(self.device)
def embed_queries(self, queries):
prefix = "query:"
if isinstance(queries, str): queries = [queries]
return self.embed_passages(queries, prefix)
def embed_quotes(self, quotes):
prefix = "passage: "
if isinstance(quotes, str): quotes = [quotes]
return self.embed_passages(quotes, prefix)
class GTE(Sent_Retriever):
def __init__(self, bs=256, use_gpu=True, model_path="checkpoint/gte-large"):
from sentence_transformers import SentenceTransformer
super().__init__(bs=bs, use_gpu=use_gpu)
self.model_path = model_path
self.model = SentenceTransformer(self.model_path)
print("[text_wrapper.py - init] Setting up GTE...")
print("[text_wrapper.py - init] GTE is loaded from '{}'...".format( self.model_path ))
self.model.eval()
self.model = self.model.to(self.device)
def embed_queries(self, queries):
if isinstance(queries, str): queries = [queries]
return self.embed_passages(queries)
def embed_quotes(self, quotes):
if isinstance(quotes, str): quotes = [quotes]
return self.embed_passages(quotes)
class Contriever():
def __init__(self, bs = 256, use_gpu= True, model_path='checkpoint/contriever-msmarco'):
from transformers import AutoTokenizer, AutoModel
self.model_path = model_path
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.model = AutoModel.from_pretrained(self.model_path)
self.bs = bs
self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")
print("[text_wrapper.py - init] Setting up Contriever...")
print("[text_wrapper.py - init] Contriever is loaded from '{}'...".format( self.model_path ))
self.model.eval()
self.model = self.model.to(self.device)
def mean_pooling(self, token_embeddings, mask):
token_embeddings = token_embeddings.masked_fill(~mask[..., None].bool(), 0.)
sentence_embeddings = token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None]
return sentence_embeddings
def embed_queries(self, query):
return self.embed_passages(query)
def embed_quotes(self, quotes):
return self.embed_passages(quotes)
def embed_passages(self, quotes):
if isinstance(quotes, str): quotes = [quotes]
quote_embeddings = []
with torch.no_grad():
for i in tqdm(range(0, len(quotes), self.bs)):
batch_quotes = quotes[i:(i + self.bs)]
encoded_quotes = self.tokenizer.batch_encode_plus(
batch_quotes, return_tensors = "pt",
max_length = 512, padding = True, truncation = True)
encoded_data = {k: v.to(self.device) for k, v in encoded_quotes.items()}
batched_outputs = self.model(**encoded_data)
batched_quote_embs = self.mean_pooling(batched_outputs[0], encoded_data['attention_mask'])
quote_embeddings.extend([q.cpu().detach().numpy() for q in batched_quote_embs])
return quote_embeddings
def score(self, queries, quotes):
if is_str_list(queries):
query_emb = np.asarray(self.embed_queries(queries))
elif is_np_list(queries):
query_emb = np.asarray(queries)
elif is_np_array(queries):
query_emb = queries
if is_str_list(quotes):
quote_emb = np.asarray(self.embed_quotes(quotes))
elif is_np_list(quotes):
quote_emb = np.asarray(quotes)
elif is_np_array(quotes):
quote_emb = quotes
return (query_emb @ quote_emb.T).tolist()
class DPR():
def __init__(self, bs = 256, use_gpu=True, model_path="checkpoint"):
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer, DPRQuestionEncoder, DPRQuestionEncoderTokenizer
self.model_path = model_path
self.query_tok = DPRQuestionEncoderTokenizer.from_pretrained(self.model_path +"/dpr-question_encoder-multiset-base")
self.query_enc = DPRQuestionEncoder.from_pretrained(self.model_path +"/dpr-question_encoder-multiset-base")
self.ctx_tok = DPRContextEncoderTokenizer.from_pretrained(self.model_path +"/dpr-ctx_encoder-multiset-base")
self.ctx_enc = DPRContextEncoder.from_pretrained(self.model_path +"/dpr-ctx_encoder-multiset-base")
self.bs = bs
print("[text_wrapper.py - init] Setting up DPR...")
print("[text_wrapper.py - init] DPR is loaded from '{}'...".format( self.model_path ))
self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")
self.query_enc.eval()
self.query_enc = self.query_enc.to(self.device)
self.ctx_enc.eval()
self.ctx_enc = self.ctx_enc.to(self.device)
def embed_queries(self, queries):
if isinstance(queries, str): queries = [queries]
query_embeddings = []
with torch.no_grad():
for i in tqdm(range(0, len(queries), self.bs)):
batch_queries = queries[i:(i + self.bs)]
encoded_query = self.query_tok.batch_encode_plus(
batch_queries, truncation=True, padding=True,
return_tensors='pt', max_length=512)
encoded_data = {k : v.cuda() for k, v in encoded_query.items()}
query_emb = self.query_enc(**encoded_data).pooler_output
query_emb = [q.cpu().detach().numpy() for q in query_emb]
query_embeddings.extend(query_emb)
return query_embeddings
def embed_quotes(self, quotes):
if isinstance(quotes, str): quotes = [quotes]
quote_embeddings = []
with torch.no_grad():
for i in tqdm(range(0, len(quotes), self.bs)):
batch_quotes = quotes[i:(i + self.bs)]
encoded_ctx = self.ctx_tok.batch_encode_plus(
batch_quotes, truncation=True, padding=True,
return_tensors='pt', max_length=512)
encoded_data = {k: v.cuda() for k, v in encoded_ctx.items()}
quote_emb = self.ctx_enc(**encoded_data).pooler_output
quote_emb = [q.cpu().detach().numpy() for q in quote_emb]
quote_embeddings.extend(quote_emb)
return quote_embeddings
def score(self, queries, quotes):
if is_str_list(queries):
query_emb = np.asarray(self.embed_queries(queries))
elif is_np_list(queries):
query_emb = np.asarray(queries)
elif is_np_array(queries):
query_emb = queries
if is_str_list(quotes):
quote_emb = np.asarray(self.embed_quotes(quotes))
elif is_np_list(quotes):
quote_emb = np.asarray(quotes)
elif is_np_array(quotes):
quote_emb = quotes
return (query_emb @ quote_emb.T).tolist()
class ColBERTReranker:
def __init__(self, bs = 256, use_gpu= True, model_path="checkpoint/colbertv2.0"):
from colbert.modeling.colbert import ColBERT
from colbert.infra import ColBERTConfig
from transformers import AutoTokenizer
self.model_path = model_path
self.bs = bs
config = ColBERTConfig(bsize=bs, root='./', query_token_id='[Q]', doc_token_id='[D]')
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
self.model = ColBERT(name=self.model_path, colbert_config=config)
self.doc_token_id = self.tokenizer.convert_tokens_to_ids(config.doc_token_id)
self.query_token_id = self.tokenizer.convert_tokens_to_ids(config.query_token_id)
self.add_special_tokens = True
self.device = torch.device("cuda" if (torch.cuda.is_available() and use_gpu) else "cpu")
print("[text_wrapper.py - init] Setting up ColBERT Reranker...")
print("[text_wrapper.py - init] ColBERT is loaded from '{}'...".format( self.model_path ))
self.model.eval()
self.model = self.model.to(self.device)
def embed_queries(self, queries):
if isinstance(queries, str): queries = [queries]
query_embeddings = []
query = ['. ' + item for item in queries] # placeholder for query emb
with torch.no_grad():
for i in tqdm(range(0, len(queries), self.bs)):
batch_queries = queries[i:(i + self.bs)]
encoded_query = self.tokenizer.batch_encode_plus(
batch_queries, max_length = 512, padding=True, truncation=True,
add_special_tokens=self.add_special_tokens, return_tensors='pt')
encoded_data = {k: v.to(self.device) for k, v in encoded_query.items()}
encoded_data['input_ids'][:, 1] = self.query_token_id
batch_query_emb = self.model.query(encoded_data['input_ids'], encoded_data['attention_mask'])
for emb, mask in zip(batch_query_emb, encoded_data['attention_mask']):
length = mask.sum().item() # Number of true tokens in this sequence
np_emb = emb[:length].cpu().numpy() # Shape: [L, H]
query_embeddings.append(np_emb) # `L` varies per example
return query_embeddings
@staticmethod
def pad_tok_len(quote_embeddings, pad_value=0):
lengths = [e.shape[0] for e in quote_embeddings]
max_len = max(lengths)
N, H = len(quote_embeddings), quote_embeddings[0].shape[1]
padded_embeddings = np.full((N, max_len, H), pad_value, dtype=quote_embeddings[0].dtype)
padded_masks = np.zeros((N, max_len), dtype=np.int64)
for i, (emb, length) in enumerate(zip(quote_embeddings, lengths)):
padded_embeddings[i, :length, :] = emb
padded_masks[i, :length] = 1
return padded_embeddings, padded_masks
def embed_quotes(self, quotes, pad_token_len = False):
quote_embeddings = []
quote_masks = []
quotes = ['. ' + quote for quote in quotes]
with torch.no_grad():
# placeholder for query emb
for i in tqdm(range(0, len(quotes), self.bs)):
batch_quotes = quotes[i:(i + self.bs)]
encoded_quotes = self.tokenizer.batch_encode_plus(
batch_quotes, return_tensors = "pt",
max_length = 512, padding = True, truncation = True)
encoded_data = {k: v.to(self.device) for k, v in encoded_quotes.items()}
encoded_data['input_ids'][:, 1] = self.doc_token_id
# bz x # max num_token in batch x 128
batched_quote_embs = self.model.doc(encoded_data['input_ids'], encoded_data['attention_mask'])
for emb, mask in zip(batched_quote_embs, encoded_data['attention_mask']):
length = mask.sum().item() # Number of true tokens in this sequence
np_emb = emb[:length].cpu().numpy() # Shape: [L, H]
quote_embeddings.append(np_emb) # `L` varies per example
# max length of quotes could differ between different batches
if pad_token_len:
quote_embeddings, quote_masks = self.pad_tok_len(quote_embeddings)
return quote_embeddings, quote_masks
return quote_embeddings
@staticmethod
def colbert_score(query_embed, quote_embeddings, quote_masks):
Q, H = query_embed.shape # [Q, H]
N, L, _ = quote_embeddings.shape # [N, L, H]
query_expanded = query_embed[:, np.newaxis, np.newaxis, :] # [Q, 1, 1, H]
quote_expanded = quote_embeddings[np.newaxis, :, :, :] # [1, N, L, H]
sim = np.matmul(query_expanded, np.transpose(quote_expanded, (0 ,1 ,3 ,2))) # (Q, N, 1, L)
sim = np.einsum('qh,nlh->qnl', query_embed, quote_embeddings) # [Q, N, L]
sim = np.where(quote_masks[np.newaxis, :, : ]==1, sim, -1e9) # Mask invalid tokens [Q, N, L]
maxsim = sim.max(-1) # MaxSim: For each query token, take max over quote tokens [Q, N]
scores = maxsim.sum(axis=0) # Aggregate (sum over query tokens) [N]
return scores
def score(self, queries, quotes):
if is_str_list(queries):
query_embed = self.embed_queries(queries)
elif is_np_list(queries):
query_embed = queries
if is_str_list(quotes):
quote_embed, quote_masks = self.embed_quotes(quotes, pad_token_len=True)
elif is_np_list(quotes):
quote_embed, quote_masks = self.pad_tok_len(quotes)
scores_list = []
for q_embed in query_embed:
scores = self.colbert_score(q_embed, quote_embed, quote_masks)
scores_list.append(scores.tolist())
return scores_list |