MM2157's picture
update model card README.md
d93562e
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: RoBERTa_token_classification_AraiEval24_Eng_multi_n_dupl
    results: []

RoBERTa_token_classification_AraiEval24_Eng_multi_n_dupl

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6921
  • Precision: 0.1617
  • Recall: 0.0919
  • F1: 0.1172
  • Accuracy: 0.6855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.3253 1.0 617 1.3214 0.1630 0.0115 0.0216 0.7059
1.1069 2.0 1234 1.2762 0.1354 0.0299 0.0490 0.7012
0.9809 3.0 1851 1.3347 0.1268 0.0614 0.0827 0.6621
0.8247 4.0 2468 1.4661 0.1354 0.0572 0.0804 0.6672
0.5789 5.0 3085 1.4868 0.1434 0.0593 0.0839 0.6698
0.4944 6.0 3702 1.5318 0.1525 0.0829 0.1074 0.6845
0.445 7.0 4319 1.6190 0.1608 0.0808 0.1076 0.6882
0.4139 8.0 4936 1.6784 0.1736 0.0945 0.1224 0.6906
0.3402 9.0 5553 1.6696 0.1599 0.0934 0.1180 0.6813
0.3125 10.0 6170 1.6921 0.1617 0.0919 0.1172 0.6855

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3