MM2157 commited on
Commit
d93562e
·
1 Parent(s): bde69b1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: RoBERTa_token_classification_AraiEval24_Eng_multi_n_dupl
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # RoBERTa_token_classification_AraiEval24_Eng_multi_n_dupl
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.6921
23
+ - Precision: 0.1617
24
+ - Recall: 0.0919
25
+ - F1: 0.1172
26
+ - Accuracy: 0.6855
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 1.3253 | 1.0 | 617 | 1.3214 | 0.1630 | 0.0115 | 0.0216 | 0.7059 |
58
+ | 1.1069 | 2.0 | 1234 | 1.2762 | 0.1354 | 0.0299 | 0.0490 | 0.7012 |
59
+ | 0.9809 | 3.0 | 1851 | 1.3347 | 0.1268 | 0.0614 | 0.0827 | 0.6621 |
60
+ | 0.8247 | 4.0 | 2468 | 1.4661 | 0.1354 | 0.0572 | 0.0804 | 0.6672 |
61
+ | 0.5789 | 5.0 | 3085 | 1.4868 | 0.1434 | 0.0593 | 0.0839 | 0.6698 |
62
+ | 0.4944 | 6.0 | 3702 | 1.5318 | 0.1525 | 0.0829 | 0.1074 | 0.6845 |
63
+ | 0.445 | 7.0 | 4319 | 1.6190 | 0.1608 | 0.0808 | 0.1076 | 0.6882 |
64
+ | 0.4139 | 8.0 | 4936 | 1.6784 | 0.1736 | 0.0945 | 0.1224 | 0.6906 |
65
+ | 0.3402 | 9.0 | 5553 | 1.6696 | 0.1599 | 0.0934 | 0.1180 | 0.6813 |
66
+ | 0.3125 | 10.0 | 6170 | 1.6921 | 0.1617 | 0.0919 | 0.1172 | 0.6855 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.30.2
72
+ - Pytorch 2.3.1+cu121
73
+ - Datasets 2.20.0
74
+ - Tokenizers 0.13.3