MM2157's picture
update model card README.md
93a72cf
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: AraBERT_token_classification__AraEval24_merged_rassd_aratweets
    results: []

AraBERT_token_classification__AraEval24_merged_rassd_aratweets

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8783
  • Precision: 0.0736
  • Recall: 0.0243
  • F1: 0.0365
  • Accuracy: 0.8564

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7095 1.0 3105 0.8134 1.0 0.0001 0.0002 0.8633
0.6521 2.0 6210 0.7728 0.1149 0.0021 0.0041 0.8631
0.5857 3.0 9315 0.7770 0.0383 0.0009 0.0017 0.8632
0.5233 4.0 12420 0.7929 0.0896 0.0100 0.0180 0.8624
0.5096 5.0 15525 0.7911 0.0716 0.0108 0.0187 0.8617
0.4685 6.0 18630 0.8200 0.0906 0.0144 0.0248 0.8618
0.4393 7.0 21735 0.8399 0.0939 0.0160 0.0273 0.8618
0.4204 8.0 24840 0.8361 0.0862 0.0230 0.0363 0.8590
0.3872 9.0 27945 0.8706 0.0782 0.0251 0.0380 0.8567
0.3569 10.0 31050 0.8783 0.0736 0.0243 0.0365 0.8564

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.12.1
  • Datasets 2.13.2
  • Tokenizers 0.13.3