metadata
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: AraBERT_token_classification__AraEval24_merged_rassd_aratweets
results: []
AraBERT_token_classification__AraEval24_merged_rassd_aratweets
This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8783
- Precision: 0.0736
- Recall: 0.0243
- F1: 0.0365
- Accuracy: 0.8564
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.7095 | 1.0 | 3105 | 0.8134 | 1.0 | 0.0001 | 0.0002 | 0.8633 |
0.6521 | 2.0 | 6210 | 0.7728 | 0.1149 | 0.0021 | 0.0041 | 0.8631 |
0.5857 | 3.0 | 9315 | 0.7770 | 0.0383 | 0.0009 | 0.0017 | 0.8632 |
0.5233 | 4.0 | 12420 | 0.7929 | 0.0896 | 0.0100 | 0.0180 | 0.8624 |
0.5096 | 5.0 | 15525 | 0.7911 | 0.0716 | 0.0108 | 0.0187 | 0.8617 |
0.4685 | 6.0 | 18630 | 0.8200 | 0.0906 | 0.0144 | 0.0248 | 0.8618 |
0.4393 | 7.0 | 21735 | 0.8399 | 0.0939 | 0.0160 | 0.0273 | 0.8618 |
0.4204 | 8.0 | 24840 | 0.8361 | 0.0862 | 0.0230 | 0.0363 | 0.8590 |
0.3872 | 9.0 | 27945 | 0.8706 | 0.0782 | 0.0251 | 0.0380 | 0.8567 |
0.3569 | 10.0 | 31050 | 0.8783 | 0.0736 | 0.0243 | 0.0365 | 0.8564 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.12.1
- Datasets 2.13.2
- Tokenizers 0.13.3