update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: AraBERT_token_classification__AraEval24_merged_rassd_aratweets
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# AraBERT_token_classification__AraEval24_merged_rassd_aratweets
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [aubmindlab/bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8783
|
22 |
+
- Precision: 0.0736
|
23 |
+
- Recall: 0.0243
|
24 |
+
- F1: 0.0365
|
25 |
+
- Accuracy: 0.8564
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.7095 | 1.0 | 3105 | 0.8134 | 1.0 | 0.0001 | 0.0002 | 0.8633 |
|
57 |
+
| 0.6521 | 2.0 | 6210 | 0.7728 | 0.1149 | 0.0021 | 0.0041 | 0.8631 |
|
58 |
+
| 0.5857 | 3.0 | 9315 | 0.7770 | 0.0383 | 0.0009 | 0.0017 | 0.8632 |
|
59 |
+
| 0.5233 | 4.0 | 12420 | 0.7929 | 0.0896 | 0.0100 | 0.0180 | 0.8624 |
|
60 |
+
| 0.5096 | 5.0 | 15525 | 0.7911 | 0.0716 | 0.0108 | 0.0187 | 0.8617 |
|
61 |
+
| 0.4685 | 6.0 | 18630 | 0.8200 | 0.0906 | 0.0144 | 0.0248 | 0.8618 |
|
62 |
+
| 0.4393 | 7.0 | 21735 | 0.8399 | 0.0939 | 0.0160 | 0.0273 | 0.8618 |
|
63 |
+
| 0.4204 | 8.0 | 24840 | 0.8361 | 0.0862 | 0.0230 | 0.0363 | 0.8590 |
|
64 |
+
| 0.3872 | 9.0 | 27945 | 0.8706 | 0.0782 | 0.0251 | 0.0380 | 0.8567 |
|
65 |
+
| 0.3569 | 10.0 | 31050 | 0.8783 | 0.0736 | 0.0243 | 0.0365 | 0.8564 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.30.2
|
71 |
+
- Pytorch 1.12.1
|
72 |
+
- Datasets 2.13.2
|
73 |
+
- Tokenizers 0.13.3
|