File size: 6,770 Bytes
b038b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from dataclasses import make_dataclass

import torch
import torchaudio
from torch import nn

from .usad_modules import ConformerEncoder

MAX_MEL_LENGTH = 3000  # 30 seconds


@torch.no_grad()
def wav_to_fbank(
    wavs: torch.Tensor,
    mel_dim: int = 128,
    norm_mean: float = -4.268,
    norm_std: float = 4.569,
) -> torch.Tensor:
    """Convert waveform to fbank features.

    Args:
        wavs (torch.Tensor): (B, T_wav) waveform tensor.
        mel_dim (int, optional): mel dimension. Defaults to 128.
        norm_mean (float, optional):
            mean for normalization. Defaults to -4.268.
        norm_std (float, optional):
            std for normalization. Defaults to 4.569.

    Returns:
        torch.Tensor: (B, T_mel, mel_dim) fbank features.
    """
    # ref: https://github.com/cwx-worst-one/EAT/tree/main/feature_extract
    dtype = wavs.dtype
    wavs = wavs.to(torch.float32)
    wavs = wavs - wavs.mean(dim=-1, keepdim=True)
    feats = [
        torchaudio.compliance.kaldi.fbank(
            wavs[i : i + 1],
            htk_compat=True,
            sample_frequency=16000,
            use_energy=False,
            window_type="hanning",
            num_mel_bins=mel_dim,
            dither=0.0,
            frame_shift=10,
        ).to(dtype=dtype)
        for i in range(wavs.shape[0])
    ]

    mels = torch.stack(feats, dim=0)
    mels = (mels - norm_mean) / (norm_std * 2)

    return mels


class UsadModel(nn.Module):
    def __init__(self, cfg) -> None:
        """Initialize the UsadModel.
        Args:
            cfg: Configuration object containing model parameters.
        """
        super().__init__()

        self.cfg = cfg
        self.encoder = ConformerEncoder(cfg)
        self.max_mel_length = MAX_MEL_LENGTH
        # NOTE: The max_mel_length is set to 3000,
        # which corresponds to 30 seconds of audio at 100 Hz frame rate.

    @property
    def sample_rate(self) -> int:
        return 16000  # Hz

    @property
    def encoder_frame_rate(self) -> int:
        return 50  # Hz

    @property
    def mel_dim(self) -> int:
        return self.cfg.input_dim

    @property
    def encoder_dim(self) -> int:
        return self.cfg.encoder_dim

    @property
    def num_layers(self) -> int:
        return self.cfg.num_layers

    @property
    def scene_embedding_size(self) -> int:
        return self.cfg.encoder_dim * self.cfg.num_layers

    @property
    def timestamp_embedding_size(self) -> int:
        return self.cfg.encoder_dim * self.cfg.num_layers

    @property
    def device(self) -> torch.device:
        """Get the device on which the model is located."""
        return next(self.parameters()).device

    def set_audio_chunk_size(self, seconds: float = 30.0) -> None:
        """Set the maximum chunk size for feature extraction.

        Args:
            seconds (float, optional): Chunk size in seconds. Defaults to 30.0.
        """
        assert (
            seconds >= 0.1
        ), f"Chunk size must be greater than 0.1s, got {seconds} seconds."
        self.max_mel_length = int(seconds * 100)  # 100 Hz frame rate

    def load_audio(self, audio_path: str) -> torch.Tensor:
        """Load audio file and return waveform tensor.
        Args:
            audio_path (str): Path to the audio file.

        Returns:
            torch.Tensor: Waveform tensor of shape (wav_len,).
        """

        waveform, sr = torchaudio.load(audio_path)
        if sr != self.sample_rate:
            waveform = torchaudio.functional.resample(waveform, sr, self.sample_rate)
        if waveform.shape[0] > 1:
            # If stereo, convert to mono by averaging channels
            waveform = waveform.mean(dim=0, keepdim=True)

        waveform = waveform.squeeze(0)  # Remove channel dimension if mono
        return waveform.to(self.device)  # Ensure tensor is on the same device

    def forward(
        self,
        wavs: torch.Tensor,
        norm_mean: float = -4.268,
        norm_std: float = 4.569,
    ) -> dict:
        """Forward pass for the model.

        Args:
            wavs (torch.Tensor):
                Input waveform tensor of shape (batch_size, wav_len).
            norm_mean (float, optional):
                Mean for normalization. Defaults to -4.268.
            norm_std (float, optional):
                Standard deviation for normalization. Defaults to 4.569.

        Returns:
            dict: A dictionary containing the model's outputs.
        """
        # wavs: (batch_size, wav_len)

        mel = wav_to_fbank(wavs, norm_mean=norm_mean, norm_std=norm_std)
        mel = mel[:, : mel.shape[1] - mel.shape[1] % 2]
        if mel.shape[1] <= self.max_mel_length:
            x, x_len, layer_results = self.encoder(mel, return_hidden=True)

            result = {
                "x": x,
                "mel": mel,
                "hidden_states": layer_results["hidden_states"],
                "ffn": layer_results["ffn_1"],
            }
            return result

        result = {
            "x": [],
            "mel": mel,
            "hidden_states": [[] for _ in range(self.cfg.num_layers)],
            "ffn": [[] for _ in range(self.cfg.num_layers)],
        }
        for i in range(0, mel.shape[1], self.max_mel_length):
            if mel.shape[1] - i < 10:
                break

            x, x_len, layer_results = self.encoder(
                mel[:, i : i + self.max_mel_length], return_hidden=True
            )
            result["x"].append(x)
            for j in range(self.cfg.num_layers):
                result["hidden_states"][j].append(layer_results["hidden_states"][j])
                result["ffn"][j].append(layer_results["ffn_1"][j])

        result["x"] = torch.cat(result["x"], dim=1)
        for j in range(self.cfg.num_layers):
            result["hidden_states"][j] = torch.cat(result["hidden_states"][j], dim=1)
            result["ffn"][j] = torch.cat(result["ffn"][j], dim=1)

        # result["x"]: model final output (batch_size, seq_len)
        # result["mel"]: mel fbank (batch_size, seq_len * 2, mel_dim)
        # result["hidden_states"]: List of (batch_size, seq_len, encoder_dim)
        # result["ffn"]: List of (batch_size, seq_len, encoder_dim)
        return result

    @classmethod
    def load_from_fairseq_ckpt(cls, ckpt_path: str):
        checkpoint = torch.load(ckpt_path, weights_only=False)
        config = checkpoint["cfg"]["model"]
        config = make_dataclass("Config", config.keys())(**config)
        model = cls(config)
        state_dict = checkpoint["model"]
        for k in list(state_dict.keys()):
            if not k.startswith("encoder."):
                del state_dict[k]
        model.load_state_dict(state_dict, strict=True)
        return model