File size: 1,234 Bytes
ea8a5bf 8f98587 ea8a5bf 27f6d76 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 ea8a5bf 8f98587 b2cb0a3 ea8a5bf b2cb0a3 8f98587 69302df 8f98587 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
library_name: transformers
tags:
- roberta
datasets:
- pubmed
language:
- en
---
# Model Card for Model ID
base_model : [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large)
hidden_size : 1024
max_position_embeddings : 512
num_attention_heads : 16
num_hidden_layers : 24
vocab_size : 250002
# Basic usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import numpy as np
# match tag
id2tag = {0:'O', 1:'B_MT', 2:'I_MT'}
# load model & tokenizer
MODEL_NAME = 'MDDDDR/roberta_large_NER'
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# prepare input
text = 'mental disorder can also contribute to the development of diabetes through various mechanism including increased stress, poor self care behavior, and adverse effect on glucose metabolism.'
tokenized = tokenizer(text, return_tensors='pt')
# forward pass
output = model(**tokenized)
# result
pred = np.argmax(output[0].cpu().detach().numpy(), axis=2)[0][1:-1]
# check pred
for txt, pred in zip(tokenizer.tokenize(text), pred):
print("{}\t{}".format(id2tag[pred], txt))
# B_MT ▁mental
# B_MT ▁disorder
``` |