Ashmal commited on
Commit
73f54eb
1 Parent(s): 28dd1e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -2
README.md CHANGED
@@ -22,7 +22,7 @@ MobiLlama-1B is a Small Language Model with **1.2 billion** parameters. It was t
22
 
23
  "Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development. However, LLMs do not suit well for scenarios that require on-device processing, energy efficiency, low memory footprint, and response efficiency. These requisites are crucial for privacy, security, and sustainable deployment. This paper explores the ‘less is more’ paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource-constrained devices. Our primary contribution is the introduction of an accurate and fully transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama, catering to the specific needs of resource-constrained computing with an emphasis on enhanced performance with reduced resource demands. MobiLlama is a SLM design that initiates from a larger model and applies a careful parameter sharing scheme to reduce both the pre-training and the deployment cost. Our work strives to not only bridge the gap in open-source SLMs but also ensures full transparency, where complete training data pipeline, training code, model weights, and over 300 checkpoints along with evaluation codes are available on our [Github](https://github.com/mbzuai-oryx/MobiLlama).
24
 
25
- [Arxiv Paper Link]('')
26
 
27
  ## Model Description
28
 
@@ -96,5 +96,12 @@ print(tokenizer.batch_decode(outputs[:, input_ids.shape[1]:-1])[0].strip())
96
  **BibTeX:**
97
 
98
  ```bibtex
99
- coming soon
 
 
 
 
 
 
 
100
  ```
 
22
 
23
  "Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development. However, LLMs do not suit well for scenarios that require on-device processing, energy efficiency, low memory footprint, and response efficiency. These requisites are crucial for privacy, security, and sustainable deployment. This paper explores the ‘less is more’ paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource-constrained devices. Our primary contribution is the introduction of an accurate and fully transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama, catering to the specific needs of resource-constrained computing with an emphasis on enhanced performance with reduced resource demands. MobiLlama is a SLM design that initiates from a larger model and applies a careful parameter sharing scheme to reduce both the pre-training and the deployment cost. Our work strives to not only bridge the gap in open-source SLMs but also ensures full transparency, where complete training data pipeline, training code, model weights, and over 300 checkpoints along with evaluation codes are available on our [Github](https://github.com/mbzuai-oryx/MobiLlama).
24
 
25
+ [Arxiv Paper Link](https://arxiv.org/abs/2402.16840)
26
 
27
  ## Model Description
28
 
 
96
  **BibTeX:**
97
 
98
  ```bibtex
99
+ @misc{thawakar2024mobillama,
100
+ title={MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT},
101
+ author={Omkar Thawakar and Ashmal Vayani and Salman Khan and Hisham Cholakkal and Rao Muhammad Anwer and Michael Felsberg and Timothy Baldwin and Eric P. Xing and Fahad Shahbaz Khan},
102
+ year={2024},
103
+ eprint={2402.16840},
104
+ archivePrefix={arXiv},
105
+ primaryClass={cs.CL}
106
+ }
107
  ```