File size: 2,820 Bytes
aa5b5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: other
base_model: google/gemma-2b
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: gemma_2b_twitter
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gemma_2b_twitter

This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4890
- Accuracy: 0.7702
- F1 Macro: 0.7272
- F1 Micro: 0.7702

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
| 0.5354        | 0.18  | 50   | 0.5565          | 0.7307   | 0.6303   | 0.7307   |
| 0.5439        | 0.37  | 100  | 0.5230          | 0.7491   | 0.6894   | 0.7491   |
| 0.4586        | 0.55  | 150  | 0.5234          | 0.7390   | 0.6373   | 0.7390   |
| 0.4596        | 0.74  | 200  | 0.4985          | 0.7647   | 0.7211   | 0.7647   |
| 0.4886        | 0.92  | 250  | 0.4890          | 0.7702   | 0.7272   | 0.7702   |
| 0.3321        | 1.1   | 300  | 0.5282          | 0.7665   | 0.7135   | 0.7665   |
| 0.3257        | 1.29  | 350  | 0.5488          | 0.7583   | 0.7216   | 0.7583   |
| 0.2753        | 1.47  | 400  | 0.5489          | 0.7463   | 0.6899   | 0.7463   |
| 0.3038        | 1.65  | 450  | 0.5646          | 0.7610   | 0.7128   | 0.7610   |
| 0.3198        | 1.84  | 500  | 0.5672          | 0.7546   | 0.7165   | 0.7546   |
| 0.2154        | 2.02  | 550  | 0.5663          | 0.7619   | 0.7196   | 0.7619   |
| 0.1491        | 2.21  | 600  | 0.6345          | 0.7546   | 0.7079   | 0.7546   |
| 0.1073        | 2.39  | 650  | 0.7069          | 0.7564   | 0.7091   | 0.7564   |
| 0.1364        | 2.57  | 700  | 0.7230          | 0.7546   | 0.7133   | 0.7546   |
| 0.1545        | 2.76  | 750  | 0.7099          | 0.7518   | 0.7038   | 0.7518   |
| 0.1718        | 2.94  | 800  | 0.7138          | 0.7472   | 0.6925   | 0.7472   |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2