File size: 5,556 Bytes
1fca2b6
 
 
 
 
2f1de78
1fca2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f1de78
 
 
 
 
 
 
 
 
1fca2b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f1de78
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import spacy
import whisper
import numpy as np
from torch import nn
from torch import Tensor
from transformers import pipeline
from sklearn.tree import DecisionTreeRegressor


class PyAI:
    def __init__(self, useGPU: bool):
        if useGPU:
            self.GPU = "cuda"
        else:
            self.GPU = "cpu"
    
    def KNN(self, x, y, returnValues = 0):
        distances = []
        for axisX, axisY in zip(x, y):
            distance = axisX - axisY
            absDistance = np.absolute(distance)
            distances.append(absDistance)
            
        sortedDistances = []
        checkDistance = min(distances, key = lambda x:np.absolute(x-i)) 
        sortedDistances.append(checkDistance)
        distances.remove(checkDistance)
            
        if returnValues == 0:
            return sortedDistances[0]
        else:
            return sortedDistances[0:returnValues-1]
        
    def RNN(self, w: int, hx: int, useReLU: bool = False):
        if useReLU:
            RNN = nn.RNN(w, hx, 4, "relu").to(self.GPU)
        else:
            RNN = nn.RNN(w, hx, 4).to(self.GPU)
            
        return self.Softmax(RNN)

    def ReLU(self, x: list, *y: list, **u: list):
        X, Y, U = [Tensor(x2) for x2 in x], [Tensor(y2) for y2 in y], [Tensor(u2) for u2 in u]
        
        relu = nn.ReLU().to(self.GPU)
            
        newX, newY, newU = [relu(x) for x in X], [relu(y) for y in Y], [relu(u) for u in U]
        
        if newU is not None:
            return newX, newY, newU
        elif newY is not None:
            return newX, newY
        else:
            return newX

    def Softmax(self, x: list | Tensor):
        if isinstance(x, list):
            tensor = Tensor(x, 1).to(self.GPU)
            soft = nn.Softmax(dim=1).to(self.GPU)(tensor)
            return soft
        else:
            soft = nn.Softmax(dim=1).to(self.GPU)(x)
            return soft
        
    def Sigmoid(self, x: list | Tensor):
        if isinstance(x, list):
            tensor = Tensor(x, 1).to(self.GPU)
            sigmod = nn.Sigmoid().to(self.GPU)(tensor)
            return sigmod
        else:
            sigmod = nn.Sigmoid().to(self.GPU)(x)
            return sigmod

    def decisionTree(self, trainX: list, trainY: list, words: list):
        w = np.array([len(a) for a in words]).reshape(-1, 1)
        tree = DecisionTreeRegressor()
        tree.fit(trainX, trainY)                                                           
        return tree.predict(w).tolist()
        
    class Audio:
        def __init__(self, audio: str):
            self.model = whisper.load_model("base")
            self.audio = audio
            
        def generateTextFromAudio(self) -> str:
            aud = whisper.load_audio(self.audio)
            aud = whisper.pad_or_trim(aud)

            self.mel = whisper.log_mel_spectrogram(aud).to(self.model.device)

            self.model.detect_language(self.mel)

            options = whisper.DecodingOptions()
            result = whisper.decode(self.model, self.mel, options)

            return result.text
        
        def translateText(self, text: str, dataSet: str) -> str:
            with open(dataSet, "r") as d:
                data = d.read()
                
            translation = text.translate(data)
            
            return translation
        
        def getLang(self):
            i, lang = self.model.detect_language(self.mel)
            return max(lang, key=lang.get)

    class NLP:
        def __init__(self, text: str):
            self.text = text
            self.sentences = text.split(".")
            self.words = text.split(" ")
            self._past = ["was", "had", "did"]
            self._present = ["is", "has"]
            self._future = ["will", "shall"]

        def setTokensTo(self, letters: bool, *words: bool, **sentences: bool):
            self.tokens = []

            if letters:
                tokens = iter(self.text)
                for t in tokens:
                    self.tokens.append(t)
            elif words:
                for t in self.words:
                    self.tokens.append(t)
            elif sentences:
                for t in self.sentences:
                    self.tokens.append(t)
            else:
                self.tokens.append("ERROR")

        def getTense(self):
            self.past = False
            self.present = False
            self.future = False

            if self.sentences in self._past:
                self.past = True
            elif self.sentences in self._present:
                self.present = True
            elif self.sentences in self._future:
                self.future = True
            else:
                return "ERROR - Tense :: Not Enough Data"

            return self.past, self.present, self.future

        def getWords(self):
            return self.words

        def getSentences(self):
            return self.sentences
        
        def getTokens(self):
            return self.tokens

        def getPartOfSpeech(self, text: str):
            POS = spacy.load("en_core_web_sm")
            return POS(text)[0].tag_
        
        def BERT(self, text: str, model: str = "bert-base-uncased"):
            BERT = pipeline("fill-mask", model=model)
            return BERT(text)
        
    class Transformers:
        def __init__(self, text: str, typeOfOperation: str = "text-generation", model: str = "gpt2"):
            transformer = pipeline(typeOfOperation, model=model)
            return transformer(text)