|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-image-classifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8080808080808081 |
|
- name: F1 |
|
type: f1 |
|
value: 0.750428326670474 |
|
- name: Precision |
|
type: precision |
|
value: 0.6850886339937435 |
|
- name: Recall |
|
type: recall |
|
value: 0.8295454545454546 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-image-classifier |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3204 |
|
- Accuracy: 0.8081 |
|
- F1: 0.7504 |
|
- Precision: 0.6851 |
|
- Recall: 0.8295 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6377 | 1.0 | 143 | 0.6156 | 0.6421 | 0.5356 | 0.4881 | 0.5934 | |
|
| 0.4556 | 2.0 | 286 | 0.4928 | 0.7141 | 0.6286 | 0.5734 | 0.6957 | |
|
| 0.3616 | 3.0 | 429 | 0.5772 | 0.6895 | 0.5930 | 0.5450 | 0.6503 | |
|
| 0.3582 | 4.0 | 572 | 0.3441 | 0.7835 | 0.6644 | 0.7208 | 0.6162 | |
|
| 0.3374 | 5.0 | 715 | 0.4094 | 0.7699 | 0.7434 | 0.6072 | 0.9583 | |
|
| 0.3273 | 6.0 | 858 | 0.6065 | 0.7115 | 0.6364 | 0.5665 | 0.7260 | |
|
| 0.3091 | 7.0 | 1001 | 0.3204 | 0.8081 | 0.7504 | 0.6851 | 0.8295 | |
|
| 0.3026 | 8.0 | 1144 | 0.3946 | 0.7694 | 0.6120 | 0.7380 | 0.5227 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|