File size: 1,732 Bytes
45da1ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import torch
import torchaudio
import json
from work70 import SpeakerIdentifier, AudioPreprocessor

# Charger la config
with open('preprocessor_config.json') as f:
    preprocessor_config = json.load(f)

with open('config.json') as f:
    model_config = json.load(f)

model = SpeakerIdentifier(num_speakers=2)
model.load_state_dict(torch.load('pytorch_model.bin', map_location=torch.device('cpu')))
model.eval()

preprocessor = AudioPreprocessor(sample_rate=preprocessor_config["sample_rate"])
speaker_names = model_config["speaker_names"]

def recognize_speaker(audio):
    if audio is None:
        return "Aucun audio enregistré."

    waveform, sr = torchaudio.load(audio)

    if sr != preprocessor.sample_rate:
        resampler = torchaudio.transforms.Resample(sr, preprocessor.sample_rate)
        waveform = resampler(waveform)

    mfcc = preprocessor(waveform)
    mfcc = mfcc.unsqueeze(0)

    with torch.no_grad():
        output = model(mfcc)
        pred = torch.argmax(output, dim=1).item()
        prob = torch.softmax(output, dim=1).max().item()

    if prob > 0.7:
        return f"✅ Locuteur reconnu : {speaker_names[pred]} (Confiance {prob*100:.1f}%)"
    else:
        return f"❓ Locuteur inconnu (Confiance {prob*100:.1f}%)"

with gr.Blocks() as app:
    gr.Markdown("# 🎤 Reconnaissance de Locuteur")
    gr.Markdown("Parle dans ton micro, et je te reconnais !")

    with gr.Row():
        audio_input = gr.Audio(source="microphone", type="filepath", label="Enregistre ta voix")
        output_label = gr.Label(label="Résultat")

    recognize_btn = gr.Button("Reconnaître")

    recognize_btn.click(fn=recognize_speaker, inputs=audio_input, outputs=output_label)

app.launch()