|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser |
|
- LunaticPython161/CyberWitch-7B |
|
base_model: |
|
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser |
|
- LunaticPython161/CyberWitch-7B |
|
--- |
|
|
|
# Lily-MoE-2x7b |
|
|
|
Lily-MoE-2x7b is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) |
|
* [LunaticPython161/CyberWitch-7B](https://huggingface.co/LunaticPython161/CyberWitch-7B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser |
|
gate_mode: hidden # one of "hidden", "cheap_embed", or "random" |
|
dtype: bfloat16 # output dtype (float32, float16, or bfloat16) |
|
experts: |
|
- source_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser |
|
positive_prompts: |
|
- "chat" |
|
- "assistant" |
|
- "tell me" |
|
- "explain" |
|
- "code" |
|
- "programming" |
|
- source_model: LunaticPython161/CyberWitch-7B |
|
positive_prompts: |
|
- "solve" |
|
- "count" |
|
- "math" |
|
- "mathematics" |
|
- "algorithm" |
|
- "cypher" |
|
- "cybersecurity" |
|
- "penetration testing" |
|
- "red team" |
|
- "blue team" |
|
- "hacking" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "LunaticPython161/Lily-MoE-2x7b" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |