File size: 2,094 Bytes
949ca92 52cb059 59d7bcc 52cb059 94f5fea 2ceff92 52cb059 59d7bcc 52cb059 94f5fea 949ca92 52cb059 94f5fea 52cb059 59d7bcc 52cb059 94f5fea 52cb059 94f5fea 52cb059 94f5fea 52cb059 db9c810 52cb059 db9c810 52cb059 94f5fea 52cb059 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
- BitsAndBytes
- PEFT
- QLoRA
datasets:
- databricks/databricks-dolly-15k
base_model: NousResearch/Llama-2-7b-chat-hf
model-index:
- name: llama2-7-dolly-query
results: []
license: mit
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama2-7-dolly-query
This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on the generator dataset.
Can be used in conjunction with [LukeOLuck/llama2-7-dolly-answer](https://huggingface.co/LukeOLuck/llama2-7-dolly-answer)
## Model description
A Fine-Tuned PEFT Adapter for the llama2 7b chat hf model
Leverages [FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness](https://arxiv.org/abs/2205.14135), [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314), and [PEFT](https://huggingface.co/blog/peft)
## Intended uses & limitations
Generate a query based on context and input
## Training and evaluation data
Used SFTTrainer, [checkout the code](https://colab.research.google.com/drive/1sr0mUF8dwYKo6NNR3tkjk0Z-p5FFr1_6?usp=sharing)
## Training procedure
[Checkout the code here](https://colab.research.google.com/drive/1sr0mUF8dwYKo6NNR3tkjk0Z-p5FFr1_6?usp=sharing)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65388a56a5ab055cf2d73676/FJ5p_wutu8o1z789Hd93g.png)
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2 |