Ludo33's picture
End of training
6483816 verified
metadata
library_name: transformers
license: apache-2.0
base_model: EuroBERT/EuroBERT-210m
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: eurobert210m_Mobilite_v1
    results: []

eurobert210m_Mobilite_v1

This model is a fine-tuned version of EuroBERT/EuroBERT-210m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0135
  • Accuracy: 0.9942
  • F1: 0.9942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.2363 1.0 124 0.8864 0.6790 0.6323
0.588 2.0 248 0.3959 0.8901 0.8796
0.3365 3.0 372 0.1947 0.9506 0.9502
0.2177 4.0 496 0.1856 0.9549 0.9540
0.1708 5.0 620 0.1072 0.9786 0.9786
0.1455 6.0 744 0.1288 0.9713 0.9716
0.1217 7.0 868 0.0800 0.9836 0.9837
0.0986 8.0 992 0.0599 0.9874 0.9874
0.0735 9.0 1116 0.0480 0.9892 0.9892
0.0577 10.0 1240 0.0305 0.9922 0.9922
0.0619 11.0 1364 0.0475 0.9897 0.9897
0.0449 12.0 1488 0.0991 0.9816 0.9814
0.0566 13.0 1612 0.0215 0.9932 0.9932
0.0473 14.0 1736 0.0228 0.9939 0.9939
0.0344 15.0 1860 0.0336 0.9922 0.9922
0.04 16.0 1984 0.0426 0.9909 0.9909
0.0353 17.0 2108 0.0191 0.9945 0.9945
0.0448 18.0 2232 0.0193 0.9932 0.9932
0.0359 19.0 2356 0.0184 0.9942 0.9942
0.0314 20.0 2480 0.0146 0.9942 0.9942
0.0257 21.0 2604 0.0173 0.9942 0.9942
0.0208 22.0 2728 0.0144 0.9942 0.9942
0.0334 23.0 2852 0.0135 0.9942 0.9942

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0