End of training
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: EuroBERT/EuroBERT-210m
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: eurobert210m_Mobilite_v1
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# eurobert210m_Mobilite_v1
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0135
|
23 |
+
- Accuracy: 0.9942
|
24 |
+
- F1: 0.9942
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 100
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
56 |
+
| 1.2363 | 1.0 | 124 | 0.8864 | 0.6790 | 0.6323 |
|
57 |
+
| 0.588 | 2.0 | 248 | 0.3959 | 0.8901 | 0.8796 |
|
58 |
+
| 0.3365 | 3.0 | 372 | 0.1947 | 0.9506 | 0.9502 |
|
59 |
+
| 0.2177 | 4.0 | 496 | 0.1856 | 0.9549 | 0.9540 |
|
60 |
+
| 0.1708 | 5.0 | 620 | 0.1072 | 0.9786 | 0.9786 |
|
61 |
+
| 0.1455 | 6.0 | 744 | 0.1288 | 0.9713 | 0.9716 |
|
62 |
+
| 0.1217 | 7.0 | 868 | 0.0800 | 0.9836 | 0.9837 |
|
63 |
+
| 0.0986 | 8.0 | 992 | 0.0599 | 0.9874 | 0.9874 |
|
64 |
+
| 0.0735 | 9.0 | 1116 | 0.0480 | 0.9892 | 0.9892 |
|
65 |
+
| 0.0577 | 10.0 | 1240 | 0.0305 | 0.9922 | 0.9922 |
|
66 |
+
| 0.0619 | 11.0 | 1364 | 0.0475 | 0.9897 | 0.9897 |
|
67 |
+
| 0.0449 | 12.0 | 1488 | 0.0991 | 0.9816 | 0.9814 |
|
68 |
+
| 0.0566 | 13.0 | 1612 | 0.0215 | 0.9932 | 0.9932 |
|
69 |
+
| 0.0473 | 14.0 | 1736 | 0.0228 | 0.9939 | 0.9939 |
|
70 |
+
| 0.0344 | 15.0 | 1860 | 0.0336 | 0.9922 | 0.9922 |
|
71 |
+
| 0.04 | 16.0 | 1984 | 0.0426 | 0.9909 | 0.9909 |
|
72 |
+
| 0.0353 | 17.0 | 2108 | 0.0191 | 0.9945 | 0.9945 |
|
73 |
+
| 0.0448 | 18.0 | 2232 | 0.0193 | 0.9932 | 0.9932 |
|
74 |
+
| 0.0359 | 19.0 | 2356 | 0.0184 | 0.9942 | 0.9942 |
|
75 |
+
| 0.0314 | 20.0 | 2480 | 0.0146 | 0.9942 | 0.9942 |
|
76 |
+
| 0.0257 | 21.0 | 2604 | 0.0173 | 0.9942 | 0.9942 |
|
77 |
+
| 0.0208 | 22.0 | 2728 | 0.0144 | 0.9942 | 0.9942 |
|
78 |
+
| 0.0334 | 23.0 | 2852 | 0.0135 | 0.9942 | 0.9942 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.48.3
|
84 |
+
- Pytorch 2.5.1+cu124
|
85 |
+
- Datasets 3.3.2
|
86 |
+
- Tokenizers 0.21.0
|