Ludo33 commited on
Commit
6483816
·
verified ·
1 Parent(s): a0bf9d3

End of training

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: EuroBERT/EuroBERT-210m
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: eurobert210m_Mobilite_v1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # eurobert210m_Mobilite_v1
19
+
20
+ This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0135
23
+ - Accuracy: 0.9942
24
+ - F1: 0.9942
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 32
46
+ - seed: 42
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 100
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | 1.2363 | 1.0 | 124 | 0.8864 | 0.6790 | 0.6323 |
57
+ | 0.588 | 2.0 | 248 | 0.3959 | 0.8901 | 0.8796 |
58
+ | 0.3365 | 3.0 | 372 | 0.1947 | 0.9506 | 0.9502 |
59
+ | 0.2177 | 4.0 | 496 | 0.1856 | 0.9549 | 0.9540 |
60
+ | 0.1708 | 5.0 | 620 | 0.1072 | 0.9786 | 0.9786 |
61
+ | 0.1455 | 6.0 | 744 | 0.1288 | 0.9713 | 0.9716 |
62
+ | 0.1217 | 7.0 | 868 | 0.0800 | 0.9836 | 0.9837 |
63
+ | 0.0986 | 8.0 | 992 | 0.0599 | 0.9874 | 0.9874 |
64
+ | 0.0735 | 9.0 | 1116 | 0.0480 | 0.9892 | 0.9892 |
65
+ | 0.0577 | 10.0 | 1240 | 0.0305 | 0.9922 | 0.9922 |
66
+ | 0.0619 | 11.0 | 1364 | 0.0475 | 0.9897 | 0.9897 |
67
+ | 0.0449 | 12.0 | 1488 | 0.0991 | 0.9816 | 0.9814 |
68
+ | 0.0566 | 13.0 | 1612 | 0.0215 | 0.9932 | 0.9932 |
69
+ | 0.0473 | 14.0 | 1736 | 0.0228 | 0.9939 | 0.9939 |
70
+ | 0.0344 | 15.0 | 1860 | 0.0336 | 0.9922 | 0.9922 |
71
+ | 0.04 | 16.0 | 1984 | 0.0426 | 0.9909 | 0.9909 |
72
+ | 0.0353 | 17.0 | 2108 | 0.0191 | 0.9945 | 0.9945 |
73
+ | 0.0448 | 18.0 | 2232 | 0.0193 | 0.9932 | 0.9932 |
74
+ | 0.0359 | 19.0 | 2356 | 0.0184 | 0.9942 | 0.9942 |
75
+ | 0.0314 | 20.0 | 2480 | 0.0146 | 0.9942 | 0.9942 |
76
+ | 0.0257 | 21.0 | 2604 | 0.0173 | 0.9942 | 0.9942 |
77
+ | 0.0208 | 22.0 | 2728 | 0.0144 | 0.9942 | 0.9942 |
78
+ | 0.0334 | 23.0 | 2852 | 0.0135 | 0.9942 | 0.9942 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.48.3
84
+ - Pytorch 2.5.1+cu124
85
+ - Datasets 3.3.2
86
+ - Tokenizers 0.21.0