File size: 11,553 Bytes
cee7934 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f95331cab00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f95331cab90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f95331cac20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f95331cacb0>", "_build": "<function ActorCriticPolicy._build at 0x7f95331cad40>", "forward": "<function ActorCriticPolicy.forward at 0x7f95331cadd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f95331cae60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f95331caef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f95331caf80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f95331cb010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f95331cb0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f95331cb130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f953324b5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675701446646666948, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVCwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbC9ob21lL2xvdWlzL0NlbnRyYWxlL01TTy9NTC9oYW5kc19vbl9ybC8udmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMbC9ob21lL2xvdWlzL0NlbnRyYWxlL01TTy9NTC9oYW5kc19vbl9ybC8udmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAJST6T443zY+Z7SGO/caFL6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdATT89r433pXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE2EDh99c8l1fZQoaAZHQH9AAAAAAABoB030AWgIR0BNyB5X2dupdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATgxlvqC6H3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE5Qb3Gn4wh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BOlBouf29MdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATtnrhR64UnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE8bUPxx1gZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BPXpaaCtihdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAT6KidrftQnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE/mQ04zabp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQFSwr1/UfdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUDcVafSQYHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBZXv6TGHZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQezrVvuPWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJ1kXk5p8HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFC/WZ7Xxvx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQ4T+JgsshdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUQMkUsWfsnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFEkjB2wFC91fZQoaAZHQH9AAAAAAABoB030AWgIR0BRRRdD6WPcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUWcvSMLncXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFGKIQOFxn51fZQoaAZHQH9AAAAAAABoB030AWgIR0BRq/nbItDldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUc4NjLB9C3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFHwMvysjml1fZQoaAZHQH9AAAAAAABoB030AWgIR0BSEmdI5HVgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUjM4YJmdy3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFJVLc9GI9F1fZQoaAZHQH9AAAAAAABoB030AWgIR0BSdsQZn+Q2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUplOclPac3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFK7LwnYxtZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BS3ZZOi35OdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUv+IoE0SAnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFMhnRsuWbB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BTQ00BOpKjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAU2WKQ7tAs3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFOJIMSbpeN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BTqqbvw3HadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAU8yqkuYhMnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFPuokAxSHd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BUEMgIQe3hdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVDKxjawljXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFRT1E3Kji51fZQoaAZHQH9AAAAAAABoB030AWgIR0BUdHZf2K2sdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVJZbY9Pk73V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFS4EeyRjjJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BU2kNKAavSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVPweCCjDbnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFUduwosqax1fZQoaAZHQH9AAAAAAABoB030AWgIR0BVP495hSccdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVXR+rlvIfnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFWer+YMOPN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BVwh0EHMUzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVfGbe/Ho5nV9lChoBkdAfgAAAAAAAGgHTeABaAhHQFYWtALRa5h1fZQoaAZHQHfwAAAAAABoB01/AWgIR0BWNezQeFL4dX2UKGgGR0B7EAAAAAAAaAdNsQFoCEdAVlXIhhYvFnV9lChoBkdAdcAAAAAAAGgHTVwBaAhHQFZs3GGVRk51fZQoaAZHQHRQAAAAAABoB01FAWgIR0BWgvb0voNedX2UKGgGR0B0UAAAAAAAaAdNRQFoCEdAVppGy5Zr6HV9lChoBkdAbcAAAAAAAGgHS+5oCEdAVqpnK4hEB3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFbLY9xIatN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BW7LDl5nlGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVw7ewcHW0HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFcwWkadc0N1fZQoaAZHQH9AAAAAAABoB030AWgIR0BXUpBX0XgtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAV3LGo73fynV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFepOM2m52B1fZQoaAZHQH9AAAAAAABoB030AWgIR0BX38tCiRGMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWBAFJQLuyHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFg2Wd3B55Z1fZQoaAZHQH9AAAAAAABoB030AWgIR0BYWx+rlvIfdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWH1ZJTVDr3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFigNayKNyZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BYxD19ORDDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWO0z/IbOvHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFkQSPU8V591fZQoaAZHQH9AAAAAAABoB030AWgIR0BZMtq+JxecdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWVV8BuGbkXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFl2tz0Yj0N1fZQoaAZHQH9AAAAAAABoB030AWgIR0BZmry1/lQudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWb73RG+bmXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFniEeQuEmJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BaBAA+6iCbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWibqdH2AXnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFpHOdGy5Zt1fZQoaAZHQH9AAAAAAABoB030AWgIR0BaaYZEUj9odX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWoxbB42S+3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFqvTkhib2F1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ba0R+jM3ZPdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAWvPLX+VC5XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFsXE0zj3mF1fZQoaAZHQH9AAAAAAABoB030AWgIR0BbOyGN70FsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAW15nrY5DJHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFuCLwnYxtZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BbpAXuVopQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAW8cWbgCOm3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFvqfCyhSLt1fZQoaAZHQH9AAAAAAABoB030AWgIR0BcDX3Dej20dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.35 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}} |