transformer_QAVi / README.md
LongRiver's picture
Training in progress epoch 9
0dfebdd
|
raw
history blame
3.77 kB
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_keras_callback
model-index:
  - name: LongRiver/transformer_QAVi
    results: []

LongRiver/transformer_QAVi

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1280
  • Train End Logits Accuracy: 0.9610
  • Train Start Logits Accuracy: 0.9485
  • Validation Loss: 2.0278
  • Validation End Logits Accuracy: 0.6900
  • Validation Start Logits Accuracy: 0.6542
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 55450, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
1.6102 0.5808 0.5465 1.1787 0.6799 0.6465 0
0.9934 0.7242 0.6859 1.1191 0.6984 0.6676 1
0.7428 0.7852 0.7468 1.1470 0.6996 0.6693 2
0.5627 0.8317 0.7975 1.2633 0.6977 0.6624 3
0.4244 0.8709 0.8396 1.4117 0.6933 0.6589 4
0.3229 0.9013 0.8736 1.5396 0.6870 0.6575 5
0.2478 0.9239 0.9009 1.7142 0.6880 0.6573 6
0.1909 0.9398 0.9243 1.8694 0.6893 0.6543 7
0.1526 0.9528 0.9388 1.9620 0.6867 0.6516 8
0.1280 0.9610 0.9485 2.0278 0.6900 0.6542 9

Framework versions

  • Transformers 4.39.3
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2