|
--- |
|
metrics: |
|
- perplexity |
|
library_name: transformers |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- emozilla/yarn-train-tokenized-8k-llama |
|
--- |
|
|
|
# Model Card: Yarn-Llama-2-70b-32k |
|
|
|
[Preprint (arXiv)](https://arxiv.org/abs/2309.00071) |
|
[GitHub](https://github.com/jquesnelle/yarn) |
|
![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/70b/data/proofpile-long-small-32k-70b.csv.png) |
|
|
|
The authors would like to thank [LAION AI](https://laion.ai/) for their support of compute for this model. |
|
It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer. |
|
|
|
## Model Description |
|
|
|
Nous-Yarn-Llama-2-70b-32k is a state-of-the-art language model for long context, further pretrained on long context data for 400 steps using the YaRN extension method. |
|
It is an extension of [Llama-2-70b-hf](meta-llama/Llama-2-70b-hf) and supports a 32k token context window. |
|
|
|
To use, pass `trust_remote_code=True` when loading the model, for example |
|
|
|
```python |
|
model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Llama-2-70b-32k", |
|
use_flash_attention_2=True, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True) |
|
``` |
|
|
|
In addition you will need to use the latest version of `transformers` (until 4.35 comes out) |
|
```sh |
|
pip install git+https://github.com/huggingface/transformers |
|
``` |
|
|
|
## Benchmarks |
|
|
|
Long context benchmarks: |
|
| Model | Context Window | 1k PPL | 2k PPL | 4k PPL | 8k PPL | 16k PPL | 32k PPL | |
|
|-------|---------------:|-------:|--------:|------:|-------:|--------:|--------:| |
|
| [Llama-2-70b-hf](meta-llama/Llama-2-70b-hf) | 4k | 3.71 | 3.27 | 2.96 | - | - | - | |
|
| [Yarn-Llama-2-70b-32k](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k) | 32k | 3.61 | 3.22 | 2.91 | 2.82 | 2.45 | 2.23 | |
|
|
|
Short context benchmarks showing that quality degradation is minimal: |
|
| Model | Context Window | ARC-c | MMLU | Truthful QA | |
|
|-------|---------------:|------:|-----:|------------:| |
|
| [Llama-2-70b-hf](meta-llama/Llama-2-70b-hf) | 4k | 67.32 | 69.83 | 44.92 | |
|
| [Yarn-Llama-2-70b-32k](https://huggingface.co/NousResearch/Yarn-Llama-2-70b-32k) | 32k | 67.41 | 68.84 | 46.14 | |
|
|
|
## Collaborators |
|
|
|
- [bloc97](https://github.com/bloc97): Methods, paper and evals |
|
- [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals |
|
- [@EnricoShippole](https://twitter.com/EnricoShippole): Model training |
|
- [honglu2875](https://github.com/honglu2875): Paper and evals |
|
|