license: cc-by-nc-4.0
datasets:
- Open-Orca/SlimOrca
- lemonilia/LimaRP
- chargoddard/rpguild
- chargoddard/summarize_from_feedback_alpaca
- HuggingFaceH4/no_robots
- chargoddard/coedit-reworded
language:
- en
tags:
- mixtral
base_model: mistralai/Mixtral-8x7B-v0.1
QLoRA tuned from mistralai/Mixtral-8x7B-v0.1.
My main reason for training this model was to investigate using an altered router balancing loss combined with the z-loss introduced in ST-MoE: Designing Stable and Transferable Sparse Expert Models. The result is pretty decent, I think! It does a good job of respecting character information in system prompts and performed adequately on a few simple coding tasks.
To train this I used a custom branch of Transformers that adds z-loss and reimplements the router balancing loss based on the version in MegaBlocks. The config used with my custom hacked-up branch of axolotl is available here.
Uses my favorite non-ChatML token-economic chat prompt format. Messages should be prefixed with " ***System:"
, " ***Query:"
, or " ***Response:"
for system, user, and model messages respectively. No newlines are necessary but the space before the triple asterisk is mandatory.