PEFT
Safetensors
English
llama
File size: 15,028 Bytes
1585186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
license: cc-by-nc-4.0
datasets:
- meta-math/MetaMathQA
- open-web-math/open-web-math
- bigcode/starcoderdata
- ise-uiuc/Magicoder-Evol-Instruct-110K
language:
- en
---

# LoRA Learns Less and Forgets Less


These are model checkpoints and LoRA adapters from the research paper ["LoRA Learns Less and Forgets Less"](https://arxiv.org/abs/2405.09673) (Biderman et al. TMLR, 2024). This work was done in collaboration with [Databricks Mosaic AI Research](https://www.databricks.com/research/mosaic).


## Model Details


- **Developed by:** Databricks Mosaic AI
- **Model type:** Research Artifacts
- **Language(s) (NLP):** English
- **License:** cc-by-nc-4.0
- **Finetuned from model:** Llama-2-7b

We trained [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) using full finetuning and LoRA. Model checkpoints and LoRA adapters can be found on HuggingFace here: [LoRA-TMLR-2024](https://huggingface.co/LoRA-TMLR-2024). Intermediate checkpoints can be found in the branches of the respective models.


| Setting | Dataset | HuggingFace Collection |
| --------| ------| ------ |
| Continued Pretraining - Code | [StarCoder-Python](https://huggingface.co/datasets/bigcode/starcoderdata) | [LoRA-TMLR-2024/continued-pretraining-code-starcoder-python](https://huggingface.co/collections/LoRA-TMLR-2024/continued-pretraining-code-starcoder-python-66f22ce3b26f416f21f58142) |
| Continued Pretraing - Math | [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) | [LoRA-TMLR-2024/continued-pretraining-math-openwebmath](https://huggingface.co/collections/LoRA-TMLR-2024/continued-pretraining-math-openwebmath-66f31d12f55fb27de05b2e3f) |
| Instruction Finetuning - Code | [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K)| [LoRA-TMLR-2024/instruction-finetuning-code-magicoder-evol-instruct-110k](https://huggingface.co/collections/LoRA-TMLR-2024/instruction-finetuning-code-magicoder-evol-instruct-110k-66f224a800152f31e4942a3b) |
| Instruction Finetuning - Math | [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) | [LoRA-TMLR-2024/instruction-finetuning-math-metamathqa](https://huggingface.co/collections/LoRA-TMLR-2024/instruction-finetuning-math-metamathqa-66f31cc40fda6b6b938d33e2) |

All training was done using the Databricks MosaicML
[composer](https://github.com/mosaicml/composer), [streaming](https://github.com/mosaicml/streaming), and [llm-foundry](https://github.com/mosaicml/llm-foundry) repositories, as well as the HuggingFace [peft](https://huggingface.co/docs/peft/en/index) library.

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** [https://github.com/danbider/lora-tradeoffs](https://github.com/danbider/lora-tradeoffs)
- **Paper:** [LoRA Learns Less and Forgets Less](https://arxiv.org/abs/2405.09673)

### Abstract

Low-Rank Adaptation (LoRA) is a widely-used parameter-efficient finetuning method for
large language models. LoRA saves memory by training only low rank perturbations to
selected weight matrices. In this work, we compare the performance of LoRA and full
finetuning on two target domains, programming and mathematics. We consider both the
instruction finetuning (≈100K prompt-response pairs) and continued pretraining (≈20B
unstructured tokens) data regimes. Our results show that, in the standard low-rank settings,
LoRA substantially underperforms full finetuning. Nevertheless, LoRA better maintains the
base model’s performance on tasks outside the target domain. We show that LoRA mitigates
forgetting more than common regularization techniques such as weight decay and dropout;
it also helps maintain more diverse generations. Finally, we show that full finetuning learns
perturbations with a rank that is 10-100× greater than typical LoRA configurations, possibly
explaining some of the reported gaps. We conclude by proposing best practices for finetuning
with LoRA.

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
These are research artifacts that are intended for research purposes only.


## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

The following datasets were used:

| Setting | Dataset | 
| --------| ------| 
| Continued Pretraining - Code | [StarCoder-Python](https://huggingface.co/datasets/bigcode/starcoderdata) |
| Continued Pretraing - Math | [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) | 
| Instruction Finetuning - Code | [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K)| 
| Instruction Finetuning - Math | [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) | 


### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

In all four scenarios below, we use the Llama-2-7B base model [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). For
the CPT runs, we use the [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) tokenizer, while for the IFT runs we use the
[meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) tokenizer.


## Code CPT (StarCoder-Python)

[StarCoder-Python](https://huggingface.co/datasets/bigcode/starcoderdata) (Li et al., 2023a) This dataset consists of permissively licensed repositories from GitHub, including Git commits, in 80+ programming languages. We chose the Python
subset and sub-sampled it to 20B tokens.

| Parameter                    | Value                                                                                   |
|------------------------------|-----------------------------------------------------------------------------------------|
| seq_len                      | 4096                                                                                    |
| optimizer                    | decoupled_lionw (betas=[0.9, 0.95])                                                     |
| learning_rate                | 1.0e-05 for LoRA and Full Finetuning                                                    |
| scheduler                    | inv_sqrt_with_warmup (t_scale=1000ba, t_warmup=1000ba, t_cooldown=5086ba, alpha_f_decay=1, alpha_f_cooldown=0) |
| weight_decay                 | 1.0e-06                                                                                 |
| precision                    | amp_bf16                                                                                |
| global_train_batch_size      | 192                                                                                     |
| device_train_microbatch_size | 6                                                                                       |
| gradient_clipping            | norm (threshold=1)                                                                      |
| num_gpus                     | 32                                                                                      |

We trained models for 0.25B, 0.5B, 1B, 2B, 4B, 8B, 16B and 20B tokens. These checkpoints can be found for each LoRA and full finetuning setting in the HuggingFace model branches.

## Math CPT (OpenWebMath)

[OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) (Paster et al., 2023) - This dataset contains 14.7B tokens derived from mathematical web pages from Common Crawl, correctly formatted to preserve mathematical content such as LaTeX equations. To match with the StarCoder-Python dataset, we trained on up to 20B tokens, repeating tokens beyond the first 14.7B. An analysis of this dataset shows that it contains a considerable amount of full English sentences.

| Parameter                    | Value                                                                                   |
|------------------------------|-----------------------------------------------------------------------------------------|
| max_seq_len                  | 4096                                                                                    |
| optimizer                    | decoupled_lionw (betas=[0.9, 0.95])                                                     |
| learning_rate                | 1.0e-05 for full finetuning, 4.0e-05 for LoRA                                           |
| scheduler                    | inv_sqrt_with_warmup (t_scale=1000ba, t_warmup=1000ba, t_cooldown=5086ba, alpha_f_decay=1, alpha_f_cooldown=0) |
| weight_decay                 | 0                                                                                       |
| precision                    | amp_bf16                                                                                |
| global_train_batch_size      | 192                                                                                     |
| device_train_microbatch_size | 6                                                                                       |
| gradient_clipping            | norm (threshold=1)                                                                      |
| num_gpus                     | 32                                                                                      |


We trained models for 0.25B, 0.5B, 1B, 2B, 4B, 8B, 16B and 20B tokens. These checkpoints can be found for each LoRA and full finetuning setting in the HuggingFace model branches.

## Code IFT (Magicoder-Evol-Instruct-110K)

[Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K) (Wei et al., 2023) This dataset contains 72.97M tokens
of programming questions and answers. It reproduces the “Evol-Instruct” dataset of WizardCoder (Luo et al., 2023b) by iteratively prompting an LLM (GPT-4) to increase the difficulty of a set of question-answer pairs
from Code Alpaca (Chaudhary, 2023).

| Parameter                    | Value                                                                                   |
|------------------------------|-----------------------------------------------------------------------------------------|
| max_seq_len                  | 4096                                                                                    |
| optimizer                    | decoupled_lionw (betas=[0.9, 0.95])                                                     |
| learning_rate                | 5e-5 for full finetuning; 2e-4 for rank r = 16, 64 and 1e-4 for r = 256 α = 2r = 512 (due to instabilities/loss spikes at 2e-4) |
| scheduler                    | cosine_with_warmup (alpha_f=0.01, t_warmup=0.1dur)                                      |
| weight_decay                 | 0                                                                                       |
| precision                    | amp_bf16                                                                                |
| global_train_batch_size      | 192                                                                                     |
| device_train_microbatch_size | 6                                                                                       |
| gradient_clipping            | norm (threshold=1)                                                                      |
| num_gpus                     | 32                                                                                      |

Each model was finetuned separately for 1, 2, 4, 8 and 16 epochs.

| Epoch    | Number of Batches | Estimated Tokens |   
| -------- | ---------- | ----------------|
| 1        | 193        | 72,970,000      |
| 2        | 386        | 145,940,000     |
| 4        | 772        | 291,880,000     |
| 8        | 1544       | 583,760,000     |
| 16       | 3088       | 1,167,520,000   |

## Math IFT (MetaMathQA)

[MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) (Yu et al., 2023) This dataset was built by bootstrapping mathematical
word problems from the training sets of GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) by
rewriting the questions with variations using GPT-3.5. This dataset contains 395K question-answer pairs and
roughly 103M tokens.

| Parameter                    | Value                                                                                   |
|------------------------------|-----------------------------------------------------------------------------------------|
| seq_len                      | 1024                                                                                    |
| optimizer                    | decoupled_lionw (betas=[0.9, 0.95])                                                     |
| learning_rate                | Full finetuning: 1e-5, LoRA: 1e-4 for r = 16, 64, 5e-5 for r = 256 due to instabilities |
| scheduler                    | cosine_with_warmup (alpha_f=0.01, t_warmup=0.1dur)                                      |
| weight_decay                 | 0                                                                                       |
| precision                    | amp_bf16                                                                                |
| global_train_batch_size      | 768                                                                                     |
| device_train_microbatch_size | 24                                                                                      |
| gradient_clipping            | norm (threshold=1)                                                                      |
| num_gpus                     | 32                                                                                      |

Each model was finetuned separately for 1, 2, 4, 8 and 16 epochs.

| Epoch    | Estimated Tokens |   
| -------- | ----------------|
| 1        |  103,000,000  |
| 2        | 206,000,000   |
| 4        | 412,000,000   |
| 8        | 824,000,000   |
| 16       | 1,648,000,000 |

## Evaluation

Model performance can be found in the paper [LoRA Learns Less and Forgets Less](https://arxiv.org/pdf/2405.09673). See Appendix for relevant tables.


## Citation

**BibTeX:**

```
@article{
biderman2024lora,
title={Lo{RA} Learns Less and Forgets Less},
author={Dan Biderman and Jacob Portes and Jose Javier Gonzalez Ortiz and Mansheej Paul and Philip Greengard and Connor Jennings and Daniel King and Sam Havens and Vitaliy Chiley and Jonathan Frankle and Cody Blakeney and John Patrick Cunningham},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2024},
url={https://openreview.net/forum?id=aloEru2qCG},
note={Featured Certification}
}
```


### Framework versions

- PEFT 0.11.1