File size: 15,028 Bytes
1585186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-hf
license: cc-by-nc-4.0
datasets:
- meta-math/MetaMathQA
- open-web-math/open-web-math
- bigcode/starcoderdata
- ise-uiuc/Magicoder-Evol-Instruct-110K
language:
- en
---
# LoRA Learns Less and Forgets Less
These are model checkpoints and LoRA adapters from the research paper ["LoRA Learns Less and Forgets Less"](https://arxiv.org/abs/2405.09673) (Biderman et al. TMLR, 2024). This work was done in collaboration with [Databricks Mosaic AI Research](https://www.databricks.com/research/mosaic).
## Model Details
- **Developed by:** Databricks Mosaic AI
- **Model type:** Research Artifacts
- **Language(s) (NLP):** English
- **License:** cc-by-nc-4.0
- **Finetuned from model:** Llama-2-7b
We trained [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) using full finetuning and LoRA. Model checkpoints and LoRA adapters can be found on HuggingFace here: [LoRA-TMLR-2024](https://huggingface.co/LoRA-TMLR-2024). Intermediate checkpoints can be found in the branches of the respective models.
| Setting | Dataset | HuggingFace Collection |
| --------| ------| ------ |
| Continued Pretraining - Code | [StarCoder-Python](https://huggingface.co/datasets/bigcode/starcoderdata) | [LoRA-TMLR-2024/continued-pretraining-code-starcoder-python](https://huggingface.co/collections/LoRA-TMLR-2024/continued-pretraining-code-starcoder-python-66f22ce3b26f416f21f58142) |
| Continued Pretraing - Math | [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) | [LoRA-TMLR-2024/continued-pretraining-math-openwebmath](https://huggingface.co/collections/LoRA-TMLR-2024/continued-pretraining-math-openwebmath-66f31d12f55fb27de05b2e3f) |
| Instruction Finetuning - Code | [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K)| [LoRA-TMLR-2024/instruction-finetuning-code-magicoder-evol-instruct-110k](https://huggingface.co/collections/LoRA-TMLR-2024/instruction-finetuning-code-magicoder-evol-instruct-110k-66f224a800152f31e4942a3b) |
| Instruction Finetuning - Math | [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) | [LoRA-TMLR-2024/instruction-finetuning-math-metamathqa](https://huggingface.co/collections/LoRA-TMLR-2024/instruction-finetuning-math-metamathqa-66f31cc40fda6b6b938d33e2) |
All training was done using the Databricks MosaicML
[composer](https://github.com/mosaicml/composer), [streaming](https://github.com/mosaicml/streaming), and [llm-foundry](https://github.com/mosaicml/llm-foundry) repositories, as well as the HuggingFace [peft](https://huggingface.co/docs/peft/en/index) library.
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [https://github.com/danbider/lora-tradeoffs](https://github.com/danbider/lora-tradeoffs)
- **Paper:** [LoRA Learns Less and Forgets Less](https://arxiv.org/abs/2405.09673)
### Abstract
Low-Rank Adaptation (LoRA) is a widely-used parameter-efficient finetuning method for
large language models. LoRA saves memory by training only low rank perturbations to
selected weight matrices. In this work, we compare the performance of LoRA and full
finetuning on two target domains, programming and mathematics. We consider both the
instruction finetuning (≈100K prompt-response pairs) and continued pretraining (≈20B
unstructured tokens) data regimes. Our results show that, in the standard low-rank settings,
LoRA substantially underperforms full finetuning. Nevertheless, LoRA better maintains the
base model’s performance on tasks outside the target domain. We show that LoRA mitigates
forgetting more than common regularization techniques such as weight decay and dropout;
it also helps maintain more diverse generations. Finally, we show that full finetuning learns
perturbations with a rank that is 10-100× greater than typical LoRA configurations, possibly
explaining some of the reported gaps. We conclude by proposing best practices for finetuning
with LoRA.
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
These are research artifacts that are intended for research purposes only.
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
The following datasets were used:
| Setting | Dataset |
| --------| ------|
| Continued Pretraining - Code | [StarCoder-Python](https://huggingface.co/datasets/bigcode/starcoderdata) |
| Continued Pretraing - Math | [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) |
| Instruction Finetuning - Code | [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K)|
| Instruction Finetuning - Math | [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) |
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
In all four scenarios below, we use the Llama-2-7B base model [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). For
the CPT runs, we use the [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) tokenizer, while for the IFT runs we use the
[meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) tokenizer.
## Code CPT (StarCoder-Python)
[StarCoder-Python](https://huggingface.co/datasets/bigcode/starcoderdata) (Li et al., 2023a) This dataset consists of permissively licensed repositories from GitHub, including Git commits, in 80+ programming languages. We chose the Python
subset and sub-sampled it to 20B tokens.
| Parameter | Value |
|------------------------------|-----------------------------------------------------------------------------------------|
| seq_len | 4096 |
| optimizer | decoupled_lionw (betas=[0.9, 0.95]) |
| learning_rate | 1.0e-05 for LoRA and Full Finetuning |
| scheduler | inv_sqrt_with_warmup (t_scale=1000ba, t_warmup=1000ba, t_cooldown=5086ba, alpha_f_decay=1, alpha_f_cooldown=0) |
| weight_decay | 1.0e-06 |
| precision | amp_bf16 |
| global_train_batch_size | 192 |
| device_train_microbatch_size | 6 |
| gradient_clipping | norm (threshold=1) |
| num_gpus | 32 |
We trained models for 0.25B, 0.5B, 1B, 2B, 4B, 8B, 16B and 20B tokens. These checkpoints can be found for each LoRA and full finetuning setting in the HuggingFace model branches.
## Math CPT (OpenWebMath)
[OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) (Paster et al., 2023) - This dataset contains 14.7B tokens derived from mathematical web pages from Common Crawl, correctly formatted to preserve mathematical content such as LaTeX equations. To match with the StarCoder-Python dataset, we trained on up to 20B tokens, repeating tokens beyond the first 14.7B. An analysis of this dataset shows that it contains a considerable amount of full English sentences.
| Parameter | Value |
|------------------------------|-----------------------------------------------------------------------------------------|
| max_seq_len | 4096 |
| optimizer | decoupled_lionw (betas=[0.9, 0.95]) |
| learning_rate | 1.0e-05 for full finetuning, 4.0e-05 for LoRA |
| scheduler | inv_sqrt_with_warmup (t_scale=1000ba, t_warmup=1000ba, t_cooldown=5086ba, alpha_f_decay=1, alpha_f_cooldown=0) |
| weight_decay | 0 |
| precision | amp_bf16 |
| global_train_batch_size | 192 |
| device_train_microbatch_size | 6 |
| gradient_clipping | norm (threshold=1) |
| num_gpus | 32 |
We trained models for 0.25B, 0.5B, 1B, 2B, 4B, 8B, 16B and 20B tokens. These checkpoints can be found for each LoRA and full finetuning setting in the HuggingFace model branches.
## Code IFT (Magicoder-Evol-Instruct-110K)
[Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K) (Wei et al., 2023) This dataset contains 72.97M tokens
of programming questions and answers. It reproduces the “Evol-Instruct” dataset of WizardCoder (Luo et al., 2023b) by iteratively prompting an LLM (GPT-4) to increase the difficulty of a set of question-answer pairs
from Code Alpaca (Chaudhary, 2023).
| Parameter | Value |
|------------------------------|-----------------------------------------------------------------------------------------|
| max_seq_len | 4096 |
| optimizer | decoupled_lionw (betas=[0.9, 0.95]) |
| learning_rate | 5e-5 for full finetuning; 2e-4 for rank r = 16, 64 and 1e-4 for r = 256 α = 2r = 512 (due to instabilities/loss spikes at 2e-4) |
| scheduler | cosine_with_warmup (alpha_f=0.01, t_warmup=0.1dur) |
| weight_decay | 0 |
| precision | amp_bf16 |
| global_train_batch_size | 192 |
| device_train_microbatch_size | 6 |
| gradient_clipping | norm (threshold=1) |
| num_gpus | 32 |
Each model was finetuned separately for 1, 2, 4, 8 and 16 epochs.
| Epoch | Number of Batches | Estimated Tokens |
| -------- | ---------- | ----------------|
| 1 | 193 | 72,970,000 |
| 2 | 386 | 145,940,000 |
| 4 | 772 | 291,880,000 |
| 8 | 1544 | 583,760,000 |
| 16 | 3088 | 1,167,520,000 |
## Math IFT (MetaMathQA)
[MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA) (Yu et al., 2023) This dataset was built by bootstrapping mathematical
word problems from the training sets of GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) by
rewriting the questions with variations using GPT-3.5. This dataset contains 395K question-answer pairs and
roughly 103M tokens.
| Parameter | Value |
|------------------------------|-----------------------------------------------------------------------------------------|
| seq_len | 1024 |
| optimizer | decoupled_lionw (betas=[0.9, 0.95]) |
| learning_rate | Full finetuning: 1e-5, LoRA: 1e-4 for r = 16, 64, 5e-5 for r = 256 due to instabilities |
| scheduler | cosine_with_warmup (alpha_f=0.01, t_warmup=0.1dur) |
| weight_decay | 0 |
| precision | amp_bf16 |
| global_train_batch_size | 768 |
| device_train_microbatch_size | 24 |
| gradient_clipping | norm (threshold=1) |
| num_gpus | 32 |
Each model was finetuned separately for 1, 2, 4, 8 and 16 epochs.
| Epoch | Estimated Tokens |
| -------- | ----------------|
| 1 | 103,000,000 |
| 2 | 206,000,000 |
| 4 | 412,000,000 |
| 8 | 824,000,000 |
| 16 | 1,648,000,000 |
## Evaluation
Model performance can be found in the paper [LoRA Learns Less and Forgets Less](https://arxiv.org/pdf/2405.09673). See Appendix for relevant tables.
## Citation
**BibTeX:**
```
@article{
biderman2024lora,
title={Lo{RA} Learns Less and Forgets Less},
author={Dan Biderman and Jacob Portes and Jose Javier Gonzalez Ortiz and Mansheej Paul and Philip Greengard and Connor Jennings and Daniel King and Sam Havens and Vitaliy Chiley and Jonathan Frankle and Cody Blakeney and John Patrick Cunningham},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2024},
url={https://openreview.net/forum?id=aloEru2qCG},
note={Featured Certification}
}
```
### Framework versions
- PEFT 0.11.1 |