LiukG's picture
End of training
231052b verified
metadata
base_model: AIRI-Institute/gena-lm-bert-base-t2t-multi
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: gut_1024-finetuned-lora-bert-base-t2t-multi
    results: []

gut_1024-finetuned-lora-bert-base-t2t-multi

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t-multi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4764
  • F1: 0.8478
  • Mcc Score: 0.5903
  • Accuracy: 0.8049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss F1 Mcc Score Accuracy
0.7012 0.02 100 0.6683 0.7478 0.0 0.5971
0.7003 0.04 200 0.6391 0.7825 0.3306 0.6710
0.6583 0.05 300 0.6211 0.7853 0.3430 0.6778
0.6381 0.07 400 0.6512 0.7812 0.3247 0.6681
0.6438 0.09 500 0.6524 0.3380 0.1874 0.5004
0.6028 0.11 600 0.5646 0.8004 0.5013 0.7606
0.5154 0.12 700 0.5437 0.8392 0.5576 0.7884
0.5226 0.14 800 0.4823 0.8503 0.5901 0.8024
0.5104 0.16 900 0.4856 0.8452 0.5851 0.8028
0.5538 0.18 1000 0.4764 0.8478 0.5903 0.8049

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2