File size: 3,045 Bytes
10264e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: V0424HMA15
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# V0424HMA15

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0650

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7205        | 0.09  | 10   | 0.3362          |
| 0.1955        | 0.18  | 20   | 0.1154          |
| 0.1119        | 0.27  | 30   | 0.0882          |
| 0.0909        | 0.36  | 40   | 0.0772          |
| 0.0819        | 0.45  | 50   | 0.0712          |
| 0.0876        | 0.54  | 60   | 0.0683          |
| 0.0753        | 0.63  | 70   | 0.0674          |
| 0.0739        | 0.73  | 80   | 0.0799          |
| 0.0803        | 0.82  | 90   | 0.0730          |
| 0.0825        | 0.91  | 100  | 0.0692          |
| 0.0813        | 1.0   | 110  | 0.0643          |
| 0.0612        | 1.09  | 120  | 0.0723          |
| 0.0638        | 1.18  | 130  | 0.0743          |
| 0.0646        | 1.27  | 140  | 0.0638          |
| 0.0639        | 1.36  | 150  | 0.0671          |
| 0.0704        | 1.45  | 160  | 0.0774          |
| 0.0672        | 1.54  | 170  | 0.0651          |
| 0.0703        | 1.63  | 180  | 0.0635          |
| 0.057         | 1.72  | 190  | 0.0654          |
| 0.0644        | 1.81  | 200  | 0.0719          |
| 0.0563        | 1.9   | 210  | 0.0721          |
| 0.0588        | 1.99  | 220  | 0.0646          |
| 0.035         | 2.08  | 230  | 0.0914          |
| 0.0409        | 2.18  | 240  | 0.0654          |
| 0.0366        | 2.27  | 250  | 0.0682          |
| 0.0333        | 2.36  | 260  | 0.0752          |
| 0.0356        | 2.45  | 270  | 0.0696          |
| 0.0298        | 2.54  | 280  | 0.0685          |
| 0.0294        | 2.63  | 290  | 0.0672          |
| 0.034         | 2.72  | 300  | 0.0656          |
| 0.0345        | 2.81  | 310  | 0.0652          |
| 0.0318        | 2.9   | 320  | 0.0650          |
| 0.0354        | 2.99  | 330  | 0.0650          |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1