V0424HMA13 / README.md
Litzy619's picture
End of training
57cb4ee verified
---
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: V0424HMA13
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# V0424HMA13
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0488
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6572 | 0.09 | 10 | 0.3872 |
| 0.1981 | 0.18 | 20 | 0.1144 |
| 0.1118 | 0.27 | 30 | 0.0984 |
| 0.0959 | 0.36 | 40 | 0.0833 |
| 0.0831 | 0.45 | 50 | 0.0732 |
| 0.0945 | 0.54 | 60 | 0.0784 |
| 0.0878 | 0.63 | 70 | 0.0747 |
| 0.0786 | 0.73 | 80 | 0.0775 |
| 0.0818 | 0.82 | 90 | 0.0726 |
| 0.0794 | 0.91 | 100 | 0.0704 |
| 0.0775 | 1.0 | 110 | 0.0680 |
| 0.0616 | 1.09 | 120 | 0.0699 |
| 0.0599 | 1.18 | 130 | 0.0760 |
| 0.0732 | 1.27 | 140 | 0.0713 |
| 0.0631 | 1.36 | 150 | 0.0712 |
| 0.0722 | 1.45 | 160 | 0.0682 |
| 0.0654 | 1.54 | 170 | 0.0810 |
| 0.0808 | 1.63 | 180 | 0.0714 |
| 0.1626 | 1.72 | 190 | 0.0920 |
| 1.8023 | 1.81 | 200 | 0.4369 |
| 0.1372 | 1.9 | 210 | 0.0750 |
| 0.0738 | 1.99 | 220 | 0.0726 |
| 0.0475 | 2.08 | 230 | 0.0786 |
| 0.0444 | 2.18 | 240 | 0.0704 |
| 0.0416 | 2.27 | 250 | 0.0661 |
| 0.0371 | 2.36 | 260 | 0.0608 |
| 0.0662 | 2.45 | 270 | 0.0548 |
| 0.0309 | 2.54 | 280 | 0.0504 |
| 0.0218 | 2.63 | 290 | 0.0492 |
| 0.0228 | 2.72 | 300 | 0.0494 |
| 0.0308 | 2.81 | 310 | 0.0490 |
| 0.0263 | 2.9 | 320 | 0.0490 |
| 0.0232 | 2.99 | 330 | 0.0488 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1